Thursday, 12 November 2020

Nehru Science Centre Turns 35



Nehru Science Centre Turns 35 : A Kaleidoscopic Visual Look back in History 

            Copy of the first visitor with entry ticket @ 50 Paisa, visiting Light and Sight Gallery - 15.10.1977

    

One of the first letter heads of the Centre  - Nehru Museum, 1976?

First Registrex ticket  1.5.1981

Letter head, which shows name changed from Nehru Museum to Nehru Science Centre 1977/78?


Glimpse of Science Park 1980 

Transporting precious locomotives to the Science Centre complex

Students at the first gallery - Light and Sight Gallery 1977/78

Barren land getting ready for development of Science Museum -1976/77

Opening of the Children Science Park - Dec, 22, 1979



    Entry ticket charged at Rs 2. 1985?

Tram Car


Construction of the main building 1984

Prime Minister Rajiv Gandhi welcomed with a rose by a young girl for the opening -11.11.1985


Rajiv Gandhi engrossed in the Planetary Motion exhibit - Dr Saroj Ghose and Late R M Chakraborty, founding Director of NSCM are seen in the picture



Rajiv Gandhi visiting the Vintage Car exhibition -11.11.1985

One of the most sought after school excursions in Mumbai is the Nehru Science Centre, which celebrated its 35th anniversary, yesterday - 11th November 2020. Although the facilities to the Nehru Science Centre, spread over an area of 11.2 acres, were opened in phased manner, the main centre and its majestic building, designed by Achyut Kanvinde, an eminent architect of India, in its current form, was dedicated to the nation by the then honorable Prime Minister of India, Mr. Rajiv Gandhi on 11th November 1985. Although I had plans to write about this momentous occasion yesterday, due to my preoccupation with making arrangements for befittingly commemorating this occasion with some innovative program, I could not complete this post yesterday, which I am now posting today. I am also honored to share some very rare archival photographs of the centre, from those early years including the first ever entry ticket and our early letter heads, which indicate that this centre was part of the Council of Scientific and Industrial Research - CSIR. The NSCM has an interesting history and it was during the development of this centre that the parent organization of our centre – The National Council of Science Museums (NCSM), was born and the Nehru Science Centre, which was earlier part of the Council for Scientific and Industrial Research (CSIR), got detached from it and started functioning under a separate autonomous scientific institution – NCSM.

 The science museum movement in India owes its genesis to Bharat Ratna, Dr. B.C. Roy. Dr Roy, the then Chief Minister of West Bengal, was highly impressed with the Deutsches Museum in Munich, Germany and his visit had such great impact on him that on his return to India Dr Roy envisaged building a similar museum in West Bengal and Calcutta (Kolkatta now) was his obvious choice. Dr. Roy requested Ghanashyamdas Birla (GD Birla) - the benevolent industrialist with nationalistic approach, for donating a suitable building and a plot of land for establishing a Museum on the lines of the famous Deutsches Museum.  The Birla’s were known for their philanthropy, particularly in the field of education and therefore G.D. Birla willingly agreed to part with the 19 A Gurusaday Road plot of land and also their existing building in the premises,  to Dr. Roy for the establishment of the said museum. Dr. Roy requested Prime Minister, Pundit Nehru, and sought his help to support his initiative for starting a world class technology museum in Calcutta. The Prime Minister of India, who also happens to be the President of the premier scientific research institution – the Council of Scientific and Industrial Research (CSIR) society, assigned the task of developing the best possible ‘Technology Museum’ to the then Director General of CSIR, Prof M. S. Thacker. Dr. Thacker with support from Dr. Amalendu Bose, the first Museum Director, established the Birla Industrial and Technological Museum (BITM), which was formally opened to the public on 2nd May 1959. Taking cue from this museum CSIR established the second museum in Bangalore, which was established as a tribute to Sir M Visvesvaraya in 1965 and was named the Visvesvaraya Industrial and Technology Museum (VITM). The building for the development of this museum was also donated by the Visvesvaraya Trust. 

 

Bombay (Mumbai now), which had begun to become the economic hub of India, was not to be left behind. The Mafatlals, (Arvind Maftlal) in the the later part of 60s took up this initiative to support development of a similar science museum in Bombay for which they expressed their willingness to donate 45 acres of land in Worli and also to fund Rs. 70 Lacs for the Museum which was to be named  the Mafatlal Industrial and Technological Museum. Unfortunately, this initiative did not progress much and the Mafatlal's who had paid the money to CSIR, took back the money and their proposal. The progress of this project was very slow and when the project was heading nowhere, in the early 70s, Mr. Rajni Patel took initiative on this project. However, by this time the project was divided into two parts, the first part was the Nehru Science Centre and the other part was the Nehru Centre, which is on Dr. Annie Besant Road. By the time things were formalized by signing the required agreements we were allotted 11.6 acres of land and this land was a dumping ground which was used for disposal of waste material and the land was also not free from encumbrance. It is now learnt that services of the para military was availed to evict the unauthorized squatters from this location.  


By the time CSIR got the possession of this land - from BMC on 99 years lease -  for the development of the Museum, the project was already delayed.  There were questions asked for the delay and the founding members of this project - Nehru Science Centre, worked very hard to convert the dumping waste land into a lush green area. However, pressure was mounting from the top for commencement of the museum for public, since the project was getting delayed. This was the time when the country was also passing through some challenging times and Emergency was imposed in India. By the time The Emergency was revoked and fresh elections were announced, there was not 'enough' progress in the project. In 1977, the Morarji Desai government (Janata Party) came to power defeating the Congress. The new government decided to review the functioning of the Council for Scientific and Industrial Research (CSIR), particularly reviewing if the museums should function under CSIR. A committee was therefore constituted to review the functioning of the museums under CSIR

It was during this stressful time that the founders of Nehru Science Centre project decided to start the project in phased manner so that some progress in the project can be show cased to the new government and part of the facility could be opened to the public. Accordingly it was decided that in the first phase a temporary workshop and shed be constructed with site office where an exhibition “Light & Sight” can be developed and thrown open to the public by the end of 1977. This exhibition was opened as scheduled and students came in good numbers to visit this exhibition. We managed to trace out the first ticket purchased by the visitor for visiting this gallery and this ticket is included in the images, which are appended with this post. The exhibition was opened in a temporary shed in October 1977 and the entry to this exhibition costed 50 paisa. It was during this time, when the committee to examine the functioning of Museums was doing its duty, an idea to start an open air science park got impregnated into the mind of Dr. Saroj Ghose, the founder Director General of NCSM. Thus, for the first time, not just in India but globally, the concept of open air Science Park was started and this was inaugurated on 22.12.1979. It was also during this time that several precious artefacts viz. Steam Lorry, Diesel and narrow gauge Steam Locomotive, Tram Car, Horse Drawn tram Car and Marut HF-24, Fighter Aircraft were collected from different sources and displayed in the Science Park. These precious artefacts and the Science Park provided a fresh impetus to detach the museums from CSIR, which had a different mandate and that Museums did not fit into this mandate. 

The task force which was constituted to examine the functioning of the museums under CSIR, submitted a report and recommended that Museums should be detached from CSIR and that a separate autonomous institution should be formed to govern all the science museums in India. The report of the task force was accepted by the Government and we were detached from CSIR and started functioning under a newly constituted autonomous scientific body, which was called the National Council of Science Museums. The founders of NCSM also decided to change their approach to making of science museums. By then a visionary in US - Frank Oppenheimer, the brother of Richard Oppenheimer of Manhattan project fame, had started an interesting project which he named the Exploratorium. This was an interesting concept which engaged the visitors hand on and they were able to perform engaging scientific observations in the working models which were displayed in the Exploratorium. This concept appealed to the Indian leadership in science center's namely - Dr Saroj Ghose. Thus it was decided that the Bombay Science Museum will be based on the new model of Exploratorium and will be renamed as Nehru Science Centre instead of Science Museum. Ever since all the subsequent science museums which have been developed by NCSM have been named Science Centers.  

The Science Park and so also the vintage locomotive artefacts, which were opened to the public, started attracting people from the neighboring areas. Even when the main building designed by leading architect, Achyut Prakash Kanvinde was getting constructed, visitors continued to visit the science park. The Science centre building was completed in 1984 and the centre had three major attractions viz. Light & Sight gallery, Sound and Hearing gallery and Science for Children gallery. In addition a Vintage Car exhibition was also on put on display. The centre with all these new facilities, named the Nehru Science Centre, was formally opened on 11.11.1985 by the then Prime Minister, Shri Rajiv Gandhi on 11th November 1985 in the august presence of several distinguished guests. Dr. Saroj Ghose, the the DG of NCSM, during one of our interactions recalled that the PMO had informed that the Prime Minister will be there for the inauguration for just about 15 to 20 minutes. However, Shri Rajiv Gandhi was so overwhelmed with what he saw in the centre that he ended up spending 75 minutes and visiting all the exhibitions and so also the Vintage Car exhibition.  

Today, when the centre celebrates its 35 anniversary, it gives me immense pleasure and satisfaction to credit and owe our gratitude to all the founding members of this great institution primarily Shri R. M. Chakrabarti, Dr Saroj Ghose, Shri Amalendu Bose, Dr. Madhuriben Shah, Shri Rajni Patel, Dr. Varadrajan, Dr. A. P. Mitra, Dr Sreekanthan, and all the past officers and staff of Nehru Science Centre, who have worked tirelessly during those early years in building this great institution, which I am sure will continue to grow in strength in the years to come. Our thanks are also due to all the Chairpersons and members of the past and present Executive Committee - the Apex body of NCSM. We owe our gratitude to are CSIR, and the Ministry of Culture, Government of India, and so also to all the earlier Directors of our Centre and former and current DG, NCSM. A big thank you to you all and I am sure this Centre will grow from strength to strength and continue to uphold the high standards that the founding members of this Centre have set for us. 


It is  a matter of great pride for us that the metro station coming up just outside our centre has been befittingly named as "Science Museum", which we are sure will help us in attracting more and more visitors. 

  

Images - All images are courtesy - Nehru Science Centre, Mumbai Archives

 


Monday, 9 November 2020

Remembering T N Seshan on his first Punyatithi - 10th November 2020.

 Remembering T N Seshan on his first Punyatithi - 10th November 2020.


Tirunellai Narayana Iyer Seshan, popularly known as T. N. Seshan, is remembered as an extraordinary architect of the modern day Election Commission of India and he will ever be remembered for brining in revolutionary changes to the electoral systems and for making the Election Commission of India one of the highly respected institutions of not just India but globally. It was on this date last year - 10th November 2019, that Seshan breathed his last in his Chennai home. Today -10th November 2020, is his first punyatithi and this day is also celebrated as the World Science Day and we are celebrating this day by opening our science centre to the public. Incidentally due to the global Covid pandemic our science centre and so also most other museums and science centres across India have remained closed to the public for nearly 8 months. It is therefore an honour for us that on the occasion of the first punyatithi of Seshan, we are opening our science centre to the public.
 

One of the monumental foundations under which our cherished country was built is its democracy and Seshan has strengthened and cemented the foundation of the Indian democracy by empowering the Election Commission of India with those mandated powers, which are feared, respected and appreciated by the Indian electorates including the political parties. The Indian elections and the manner in which these elections are conducted by the Election Commission of India have now become an example for most democracies across the world and today we must remember the man who is primarily to be credited for this - Mr T N Seshan. Seshan’s contributions to the Election Commission can best be seen in the words of former Chief Election Commissioner, T.S. Krishna Murthy, who in his book “Miracle of Democracy: India’s Amazing Journey,” has termed Seshan’s tenure a “turning point” in the history of Election Commission. He says “If the history of Election Commission is written, it has to be divided into two parts; pre Seshan era, where the Commission functioned as a department of the government,  and post-Seshan era, when the Commission became truly independent”. 










Images : Courtesy Wiki Commons

It is therefore no wonder that Seshan has come to be recognised and known as the father of electoral reforms in India. Seshan assumed the office of the Chief Election Commissioner (10th CEC to do so) of India on 12 December, 1990 and served till 11 December 1996. It is interesting to note that the office of the Chief of Election Commission of India, prior to Seshan assuming the charge, was considered as one of those less heralded posts in government offices, which none of the career minded Indian Administrative Service Officers - IAS, ever wanted to head. And it was no different for Seshan as well. Seshan became the 10th CEC of India, who served during the period 1990–96. When Seshan was appointed as the CEC, this post, as stated above, was considered as an ornamental position that most career officers, including Seshan, desisted. Seshan, who had occupied decorated positions like the Home and Cabinet Secretary to the Government of India prior to becoming the CEC, was not alt all happy with his new posting as the CEC. Like many of his peers - IAS colleagues, Seshan too was of the opinion that CEC was an insignificant posting for a decorated IAS officer and that this posting came with neither power nor financial benefits. 


Utterly disappointed with his new posting, Seshan, a highly pious and religious man who revered the Kanchi Seer -  who comes from the lineage of the famous Adi Shankarachaya the first of the Kanchi Seer - went to meet the Swami Paramacharya, the then Kanchi Seer, to seek his advice and blessings. The highly respected Kanchi Seer Paramacharya – who was 97 years of age then - immediately sensed the cause of Seshan’s disappointment and counselled him to treat the new posting as a God sent opportunity to serve the Indian electorate. He advised Seshan to visit the Uttiramerur temple (near Kanchi) and study the details of electoral regulations, which were prevalent in India, some 1000 years ago. The Seer informed  Seshan, that even if he were to implement a tenth of the electoral reforms that are enshrined with clarity and minute details in the Uthiramerur temple, he would be doing the greatest of service to the Indian democracy and to the electorates. The sermons of the Kanchi seer had a great impact on Seshan and the rest we all know is history. Before proceeding with Seshan and his remarkable contributions to reforming the office of the CEC and Election Commission of India, a brief write up on the history and significance of the Uttiramerur temple and its relationship with democracy is definitely warranted more so since the revered Kanchi Seer could influence TN Seshan about this temple and true to his reverence for the Seer, Seshan went and studied the temple, its history and its connect with democracy. 


The prestige of the Kanchi Kamakoti Peetham, founded by Sri Adi Sankaracharya on the Vaisaka Sukla full moon day in 481 B.C, has been very high and the Kanchi Seers have always been respected because of the deeds of the sages who have adorned this Peetham as the Mathadhipatis. His Holiness Sri Chandrasekharendra Sarasvathi Swamigal, also known as Swami Paramacharya, became the 68th Matadhipathi and he has been acknowledged by all as one of the most noblest and finest seers of all times. Ever since he became the Matadhipathi of Kanchi Kamakoti, in 1907, he continued to guide his followers and the community and so also aspiring souls from all over the world and one of those innumerable persons who came to seek his guidance was TN Seshan. The temple of democracy, which Swamy Paramacharya had advised Seshan to study is located in a nondescript place called Uttiramerur, which is situated some ninety kilometres from Chennai. There is nothing noteworthy at Uthiramerur except for the three famous temples: the Sundara Varadaraja Perumal Temple dedicated to Vishnu, Subramanya Temple (Murugan) and Kailasanatha Temple (Siva). About half a kilometre away is another temple called Vaikunta Perumal Koil. The sanctum sanctorum of this temple is a rectangular assembly hall (mandapa). On top of this assembly hall is the vimana, the traditional turret of temples in this region. On the walls of the assembly hall are inscriptions, in Granth and Tamil Brahmi scripts, which describe some tenets on elections: how to hold elections to village assemblies, constitution of committees, removal of errant office bearers etc. 


These inscriptions date back to the early 10th century (920AD) to the period when Parantaka Chola ruled over vast territories of South India. He defeated the Pandya kingdom and captured its capital, Madurai. The king took great interest in the administration of his dominions and was considered as a reformist of eminence. Legend has it that he was advised by his ministers to set up assemblies in villages and hand over local administration to them, which he readily agreed to do so. The rules for the local,administration were inscribed in the walls of the assembly hall in the temple complex. It is said that the temple was built, perhaps to give religious sanction to the institution of elected village assemblies. This temple - Vaikunta Perumal Koil has been declared as a national heritage site and is currently looked after by the Archeological Survey of India. One can see many inscriptions on the walls of the hall, which deal with administrative, judicial, commercial, agricultural, transportation and irrigation regulations. These regulations were meant to be administered by the then village assembly. Swami Paramacharya, knew about these inscriptions and therefore he had asked Seshan to study and understand the democratic system, which existed in India some 1000 years back and try and implement this in the Election Commission. True to the advise, blessings and sermons of Swami Paramacharya, who had informed Seshan that even if he were to implement a tenth of the electoral reforms that are enshrined with clarity and minute details in the Uthiramerur temple, he would be doing the greatest of service to the Indian democracy and to the electorates, Seshan went about reforming the Election Commission of India. Therefore while appreciating the reforms that Seshan brought out we must also credit the Kanchi Seer who motivated Seshan to do this and so also the Uttiramerur temple and the inscriptions found in this temple. 


Seshan assumed the office of CEC during a very crucial period in Indian history. During this period of Indian democracy, Seshan witnessed five Prime Ministers of India. Until Seshan became the CEC, the Election Commission (EC) was hardly known to few people and most of the elections in India remained largely under the shadow of political bigwigs. All this was to change -  and change for good and for ever - with the entry of T. N. Seshan. Every political party and their leaders, including the  high and mighty politicians, were compelled to accept the primacy and authority of the Election Commission - a constitutional body, which has a mandate for conducting free and fair elections in India. Seshan brought about revolutionary changes in the functioning of the EC and introduced many electoral reforms. He gave a slogan "Nobody dare violate the law,” to highlight the unbending powers of the EC and on several occasions he demonstrated that the EC is not a toothless tiger. His actions were desisted by many political parties and almost every one of them stood against what they called a “dictatorial attitude” of the CEC.  Seshan was also called as Al-Seshan - symbolising one famous breed of dog in India, by political leadership, but then Seshan remained undeterred in his determination to improve the  electoral system and the functioning of the EC.


Tirunellai Narayana Iyer Seshan, popularly known as T. N. Seshan, was born on the 15th December, 1932 in Thirunellai, Palakkad District, Kerala. He belonged to the 1955 batch of IAS officers from Tamil Nadu cadre. He is an alumnus of the Madras Christian College, where he did his graduation in Physics. He is also an alumnus of the Harvard University from where he completed a course in management in the 1960s. Seshan began his civil service career from his home state, Tamil Nadu, which was largely uneventful. The only time he came to lime light was when he  very sternly handled the anti-Hindi agitation while he was the Madurai District Collector (1965-67). K. Govindan Kutty, in his book ‘Seshan: An Intimate Story (1994),’ talks about this incident and states that the then Chief Minister of Tamil Nadu, M. Bakthavatsalam, was flooded with complaints of suppression of civil rights by Seshan, while handling the agitation. Fortunately, Seshan did not face any trouble for his action, which had infuriated local people. 


Seshan, while serving the Tamil Nadu government, held positions such as Industries Secretary and Agriculture Secretary (1977-80). His differences with the political masters in Tamilnadu compelled him to opt for a Central posting. Mr. Seshan held several important senior positions in the Centre including the office of the Secretary of Environment and Forests Secretary and Defence Secretary. Seshan went on to occupy the pinnacle post of bureaucracy - the Cabinet Secretary to the Government of India, during Rajiv Gandhi’s time. Unfortunately when Rajiv Gandhi lost power in 1989, and VP Singh became the Prime Minister, Seshan was shunted out of the post of Cabinet Secretary and was given a side posting  as a Member in the Planning Commission.  But then the VP Singh government could not survive for long and gave way for Chandra Shekhar, who became the Prime Minister with the support of Rajiv Gandhi, with whom Seshan had cordial relations. This came as a blessing in disguise for Seshan, and he moved out from the Planning Commission and he was appointed as the CEC, in December 1990.  


Seshan Assumed the office of the Chief Election Commissioner (CEC) of the Election Commission - Nirvachan Bhavan – on 12.12.1990, a historic day, which must get etched into the annals of Indian electoral reforms. Incidentally this day also has a special relevance for me and my wife since it happens to be the very day when we got married. In a span of just six years of his tenure as the CEC, Seshan, completely transformed the Election Commission. Unfortunately, before the entry of Seshan into the picture, the Indian electioneering system was infamously known for a rapid criminalisation of politics, evils of booth capturing, rigging, poll violence etc. all of which had got embedded into the electioneering system in India, has compelled the electorates to curse the electoral system. Indian electorates were more or less getting used to the unfortunate corrupt practices of the system. Seshan realised that urgent and extraordinary corrective measures are to be taken to cleanse the system and to bring credibility to the Election Commission of India. He firmly believed that, as advised by the Kanchi Seer, it was a god sent opportunity for him to serve his people and cleanse the electoral system in India, where the democratic practices seem to have thrived some 1000 years before. 


Managing the Indian elections is a Himalayan task with monumental challenges. It involves, among other things, operating some 8,00,000 plus voting booths; some five million plus personnel - in addition to a large contingent of security force - who are necessary for conducting free and fair elections across our vast country. The Election Commission of India has been very successfully conducting election after elections with relatively lesser complaints and the credit for this must go to T N Seshan. India is now proud of being the largest democracy in the world, with its unique electioneering success that is demonstrated regularly during the periodical elections that are held in either the states or the national elections. This achievement, for which Seshan deserves major credit, is no mean a task when considered with some of the unfavourable circumstances that exists in India, which include far remote corners, the Naxalite problems, relatively lower literacy rate and so also vast economic disparities among its people.


Of the many reforms that Seshan brought about in the Indian electoral system, some of the prominent ones that are considered as Seshan’s commandments, include; no bribe or intimidation to the voters, no distribution of liquor, no usage of official machinery for campaigning, no appeal to the voters in the name of religion, caste or communal lines, not to use places of worship for the electoral campaigns, no usage of loud speakers without the explicit written permission, no defacing of public property for political hoardings and posters, limited money spending and many other extraordinary electoral reforms, which were unheard of in the electoral system in India prior to Seshan assuming the office of the CEC. All of us take these commandments for a given now, but then when Seshan became the CEC, things were completely different.  Seshan introduced a mechanism of temporarily deputing state employees to the Election Commission, during election time. He came down heavily on employees who took their duties lightly by arguing that once the officials were assigned to the Election Commission, they fell under his jurisdiction and it was within his power to deal with the erring officials. This resulted in the entire election machinery functioning without fear or favour and ensured that the personnel deployed for the election performed their duties honestly and efficiently. Many local bureaucrats, who were seen as the puppets of local politicians until Seshan’s entry, soon realised that they will face the wrath of the Election Commission, which could affect their long term career, turned a new leaf and started functioning with honesty and sincerity. Seshan ensured that the bureaucracy was not targeted by the political class, helping the EC to not only be fair but also seen to be fair. This aspect was absolutely essential to neutralise the influence of the powerful local politicians on the administrative mechanism of the EC. Seshan remained a tough task master and never alluded to any of the illegal demands of the political class, an evidence of which can be seen in his decision of cancelling the 1992 elections in Bihar and Punjab. It sent out a very strong message “no messing around with the Election Commission”. He ensured that the model code of conduct was implemented in letter and spirit by all the political parties and candidates.


Seshan’s no nonsense approach was despised by almost all politicians and all of them joined hands to try and cut him to size. This led to the formation of a multimember body for managing the EC, which was formed in October 1993, with the appointment of M.S. Gill and G.V.G. Krishnamurty as Election Commissioners. Seshan opposed the government’s move, but then the Supreme Court upheld the government’s decision to appoint two additional Election Commissioners. The appointment of additional ECs did not deter Seshan from implementing his vision for the EC, for which he is remembered even today and will be so for eternity. Seshan did not fade into oblivion, immediately after laying down the office of CEC in December 1996. In July 1997, he unsuccessfully contested the presidential election against K.R. Narayanan and lost. Two years later, Seshan contested the Gandhinagar parliamentary constituency against the then Union Home Minister L.K. Advani, as a Congress candidate and lost. 


Seshan was also associated closely with Department of Space, where he served as the Joint Secretary. It was during this period that he came to know Dr APJ Abdul Kalam. There is another anecdote of Seshan’s association with Dr Kalam, which was revealed by President Kalam himself in one of his books. The period goes back to the time when Dr Kalam was with the DRDO and they were given a go ahead to test the Agni Missile in May 1989. Dr Kalam says in his book “ that Seshan, who was then the Cabinet Secretary, called Dr Kalam from his hotline in the dead of the night at around 3 AM on 22nd May, 1989, and asked Kalam to defer the launch of the Agni missile. The decision had come from the top as a result of the tremendous pressure from US and NATO. It was a difficult instruction for Kalam to obey since it was too late to cancel the missile launch. In his book “Advantage India: From Challenge to Opportunity”, one of the last book written by Dr Kalam, President Kalam talks about this incident. Dr. Kalam writes that he informed Seshan “Sir, the missile is at a point of no return. We cannot turn back on the test now. It is too late”. Dr Kalam says that Seshan, with a deep breath and a pause, said ‘Go ahead’.  Three hours later, the Agni missile system was flawlessly test launched on May 22, 1989. 


The mortal remains of Seshan may have been confined to the holy fire last year, but then his monumental contributions to the Election Commission will ever remain in the hearts and minds of people for generations to come. Today while commemorating the first punyatithi of Seshan let us once again remember him for his contributions to the Indian democracy. 


Long live Seshan in the hearts and minds of people

Saturday, 7 November 2020

Birthday of the Legendary C.V. RAMAN : The Man who saw Light Differently


Birthday of the Legendary C.V. RAMAN : The Man who saw Light Differently and helped in the Emergence of Modern Indian Science.


 

This day - November 7, marks the 132nd birth anniversary of Sir Chandrasekhar Venkata Raman -  C V Raman, the one and only Indian Scientist to win the Nobel Prize in Physics. Not just that, Raman also became the first Asian and a first non white Scientist to win the most coveted Nobel Prize in sciences, in the year 1930, for the discovery of the effect known after his name - The Raman Effect. Raman was born on 7th November, 1888 in a small town of Thirucherapalli, Tamil Nadu to R. Chandrasekhara Iyer and Parvathi Ammal. Raman received the coveted Nobel prize at a relatively young age of 42. Considering the fact that Raman did not start his career as a regular scientist, his achievement becomes all the more remarkable. Raman actually began his career as an Assistant Accountant General with the colonial Indian Finance Department in Calcutta in 1907 and served this post for nearly a decade before resigning from the post to start his full time career as a Palit Professor in Physics at the Calcutta University in 1917. During the period from 1907 to 1917, Raman worked part time at the Indian Association for the Cultivation of Science, where he pursued his research and passion for science. Raman had barely worked for 13 years as a regular and professional scientist, before receiving his coveted Nobel Prize, which makes his achievements that much more praiseworthy. Raman must therefore mandatorily be considered as a scientist who deserves to remain alive in our history lessons to become a source of inspiration for generations to come. I was therefore of the opinion that our Indian media will do justice to this great legend - Sir C V Raman, by remembering him and writing about him on his birthday today. 


But then most unfortunately a look at the densely populated Times of India, Mumbai edition, and so also a cursory search through several other news and media, has revealed that there is no coverage of Raman’s birthday, barring a few passing reference here and there, in any of the major media, both print and electronic, which have continued to give major coverage to the Bihar and US elections and so also the Covid pandemic. What a travesty of justice and an indifference to this great scientist of India, who pushed those barriers of colonialism and slave mindset to make a mark not just for himself but also for our entire country and that too in the field of sciences, which was believed to be the sole fiefdom of the whites who had loads of money. Raman broke the myth that great science can only be practiced and performed in labs that invest tonnes of money on scientific research. 


Raman started his scientific career as a part time activity  in a nondescript building - with unkempt and ill equipped laboratory -  at the Indian Association for the Cultivation Science, Calcutta (IACS). It was here that Raman created his tryst with scientific destiny and discovered the Raman Effect on the evening of 28th February 1928, to earn the coveted Nobel Prize in Physics in 1930. The IACS, an eponymous Institute, was famously and laboriously created by yet another great Indian nationalist, Dr Mahendra Lal Sircar, who envisaged building an institute of excellence in science where Indian students could perform science in the very Institute created by an Indian for the Indians. It was here that Raman looked at light differently and laid the foundation, with his other illustrious fellow scientists, for the emergence of modern Indian science. Incidentally it was on the 21st of November 1970, that Sir CV Raman left for his heavenly abode and this year also marks the fiftieth year of his punya tithi. I earnestly hope that the media makes amends for their turning a blind eye to this great legend and extend him that mandated respect and reverence and cover him extensively while commemorating his fiftieth punya tithi, which is just two weeks from now. Raman, though not a believer, was firmly grounded in his beliefs in Indian ethos and traditions and sported his religious sacred thread conspicuously on his bare chest and that quintessential symbolic ‘pigtail’ was dangling behind his head, which was almost always covered by that trademark Raman Head gear.


As a science communicator and a science museum professional, what appeals to me most about Raman was his love for taking science to the children. Notwithstanding the fact that he was the most famous scientist in India, Raman loved to invest his time and interact with school children, a much needed attribute for scientists, particularly in India where scientific research is mostly public funded. Unfortunately, that is not the case and most of the Indian scientists shy away from interacting with  school students and feel that it may be a waste of time for the practising scientists to be away from their lab and scientific research work. We need role models for our children, who are a plenty when it comes to subjects like sports and cinema and these role models, be it the likes of Sachin Tendulkar or Amitabh Bachhan or the likes of Saina Nehwal and Aishwarya Rai, are covered day in and day out in the media and advertisements. The influence of such role models on young minds is there for every one to see. But then we hardly have any scientist role models, who get even a fraction of that media highlight, which the sports and cinema stalwarts receive in India and therefore it becomes that much more necessary for the practising scientists to directly interact with school students to be their role models. Raman was truly a great role model who loved to interact with school children.  One of the incident, which a renowned photojournalist TS Satyan narrates, highlights Raman’s interest in children and speaks of the extraordinary quality of Raman to connect very easily with children. Satyan says that a group of school children from the local school in Bangalore came calling at the Raman Research Institute, an institute, which Raman created with help from the Mysore Maharaja, where he continued his research post his retirement from the Indian Institute of Science until his last (1948-70). Satyan writes ‘Raman bubbled over with joy in the company of school children answering their questions in his characteristic, simple way’. Raman later guided them to a room saying: "I will show you something beautiful." One of the research interests of Raman, while spending his time at the Raman Research Institute, was in minerals, stones and gems. Raman guided the students to one of the rooms in the Institute where he had stored a variety of stones of many sizes and shapes, besides crystals, diamonds and minerals, which were beautifully displayed in the dark walled room. Raman then suddenly switched off the lights in the room. Standing in the centre of the dark room, he switched on a portable ultra violet lamp and directed his lamp on the stones and minerals, which were exhibited in the room. The stones and minerals came alive and began to glow in breathtaking bright colours - violet, indigo, blue etc and in their myriad combinations. A bright little girl screamed in joy "Alice in wonderland". Delighted, Raman joyously hugged her and planted a soft kiss on her tender cheek. Such was his innate love for children and he was quite innovative in exciting the young minds to the fascinating world of science. Having shown the children the beauty of nature, which for Raman was central to scientific research, Raman went on to explain the scientific basis of the phenomena of fluorescence and phosphorescence. He also took children around the campus showing them colourful flowers and also spoke about the discovery of what came to be known as the Raman Effect, which concerns the molecular diffraction of light that won him the Nobel Prize for Physics in 1930. It is such experience that motivate children to pursue science as their career and that too with passion. I would therefore like to dedicate this post of my reverence to Raman to the cause of Science.


C.V. Raman, can be rightly described as one of the key architect who laid the foundation for modern science in India. Raman and some of his illustrious colleagues at Kolkata, which included among others, JC Bose, P C Ray, MN Saha, S N Bose, are befittingly credited to be the founders of the Indian Scientific Renaissance, a period of great reckoning for science in India. They excelled in scientific research bringing in name and fame to the Indian Science during the pre-independence era. The period from the early twentieth century to the epoch year 1947, when India attained its independence, is of great importance for Indian science. Although it is considered that the inception of western science in India is of recent origin, it is a matter on records that India did produce eminent scientists during the pre independence period and the scientific research that emanated from India during this period is of international repute. Raman and his colleagues made their mark in the world of Western science by their original contributions during the early decades of the twentieth century. Raman was amongst the pioneers of that period, self-taught and fully self-trained, who, while pursuing research on his own, created a new ambience and a new school of thought for scientific research in India.


Raman’s association with the city of Joy, Kolkata, is legendary. It was in this city that Raman once again fell in love with his passion for science on seeing the historical ‘Indian Association for Cultivation of Science (IACS)’ board, while travelling in a tram on way to his office as the Assistant Accountant General, a highly lucrative job of the Indian Financial Services with the British Indian Government. The rest, what they say, is history, which ultimately led Raman to the most coveted Nobel Prize in Physics in 1930. This year due to the Covid pandemic Raman’s birthday celebrations have been muted in most scientific institutions including in science museums. However, I am reminded of last years celebrations, which coincided with the India International Science Festival that was organised at our sister unit, Science City, Kolkata. To commemorate  Raman’s birthday last year, the city of Joy chose a brilliant, Guinness Book record winning idea in which nearly 1600 students of classes VI to XI from different schools from across the country attended a lecture on astrophysics at the Science City, Kolkata, to set a new record in the Guinness Book of World Records. This was one of several events,  which were  organised during the fifth edition of the India International Science Festival (IISF) at Science City. Another interesting feature of the event was that all the students who participated in the event were engaged in the making of a small model of an advanced low cost spectroscope, with cardboard, during a practical experiment session that followed the lecture. The low cost spectroscope equipment was meant to inspire students that Raman produced his monumental findings using such low cost scientific instrument to discover the Raman effect. Raman had used a low cost, locally built Spectrometer at the IACS and this instrument, which costed him less than 500₹,  helped him and his associates in recording their experimental readings, which led to the discovery of  the Raman effect and the Nobel Prize in Physics for the year 1930.  


Raman and his students developed the Spectroscope while working at the IACS some times during the period from 1924 to 27.  The path breaking experiments, which were carried out at the IACS using this instrument, culminated in the publication of the findings of a ‘new light’, which was first published in the renowned international magazine, Nature, in 1928. This very instrument, which won Raman the Nobel Prize, was one of the six precious antiquity objects that were sent from India to be a part of the historic exhibition ‘Illumination India - 5000 years of science and Innovation’ that was exhibited at the London Science Museum from October 2017 to April 2018. I was honoured and privileged to be the national coordinator for this coveted exhibition. This historic exhibition was one of the major events to commemorate the India - UK year of Culture. Our Honourable Prime Minister, Shri Narendra Modi ji, paid a visit to this exhibition in London in April 2018. Fourteen significant objects of importance were sent for the exhibition from India, which included six antiquity objects - including Raman’s original Spectroscope, and 8 other non antiquity objects.


The original Raman Spectrometer is now with the IACS and it had 6 different components, namely the Mercury Vapor Lamp, Collimating Lens, the Sample holder, the Collecting lens, the Violet Filter. The original Raman Spectrometer, which was sent for the exhibition was not in working condition as the inner contraptions of the spectrometer were missing. This instrument was originally used to identify materials that display Raman Scattering, a scattering of light which will depend on the medium through which the light gets scattered and the wavelength of the scattered light will change according to the medium and will be higher or lower in frequency. This was completely a path breaking finding. Sir, C V Raman got the Nobel Prize for the discovery of an effect named after him in the year 1930, using this very instrument. On completion of the exhibition the Raman Spectrometer along with other antiquity objects returned back to India and the Raman spectrometer is now in the custody of IACS, the very institute where Raman developed and used this instrument.


Raman was an extraordinarily precious child excelling in academics all through his career. Raman’s father served initially as a school teacher and later became a lecturer in mathematics and physics in a college in Vishakhapatnam. Raman studied in St. Aloysius Anglo-Indian High School at Vishakhpatnam from where he passed his matriculation examination at a very young age of 11 years, in 1899. At the age of 13 he passed his F.A. examination (equivalent to today’s intermediate examination) with a scholarship. He then moved to Madras and joined the Presidency College in 1902 from where he completed his B.A. in physics in 1904. He topped the exams and won the gold medal. Three years later, he earned his M.A. degree in 1907. His interest in science was kindled from a very young age. Raman got two of his initial research papers published in the Philosophical Magazine UK, when he was still pursuing his MA degree in Madras. He received a letter from Lord Rayleigh, the eminent scientist, addressing  Raman as “Professor Raman”, not knowing that Raman, the author of the paper, was  still a student and was just nineteen years of age. During this period in India the best possible career opportunities for the bright students were the Indian Civil Services, the former avatar of the modern day Indian Administrative Service - IAS, which continues to be a coveted career even today. But then for competing for the ICS it was mandatory for the aspirants to travel to London for appearing for this exam. Unfortunately Raman was too frail and the doctors advised his parents that Raman will not be able to endear this long and arduous sea journey. Therefore Raman’s father advised Raman to try for the next best possible career option, which was the Indian Financial Services. Raman qualified in the Indian Financial Services Exam and was selected to serve as the Assistant Accountant General in the British Government. His first posting was in the city of Calcutta. He moved to Calcutta in the year 1907 and joined the British government service as the Assistant Accountant General. Serendipitously, one day while travelling in the tram to his office, Raman came across a board on the Bow Bazar Street  titled ‘Indian Association for the Cultivation of Science’ (IACS), which completely changed the career path of Raman in the years ahead.


On his return back from office to home, Raman dropped in at the IACS office to enquire about the institute. The IACS was laboriously and painstakingly created by the legendary Dr Mahendra Lal Sircar, a nationalist who envisaged building an institute of excellence in science where Indian students could perform science in the very Institute created by an Indian for the Indians. Raman’s love for experimental science bloomed in the dusty ambience of IACS, which in a way is inextricably linked to the Indian Renaissance in science. It was this very place where Raman worked, part time, painstakingly on his passion that compelled him to let go of a highly lucrative career with the British Government in the financial services,  to settle for a lesser salary job at the Calcutta University - as the Palit Professor. Interestingly enough the Palit Professor position, which was offered to Raman by the great Prof. Ashutosh Mukherjee, the Vice Chancellor of Calcutta University who was also the father of Shyamaprasad Mukherjee, had a condition for the Palit Professorship that the incumbent of the chair must mandatorily be trained abroad. However, Prof Ashutosh Mukherjee knowing the merit and scholastics that Raman possessed for the job, managed to convince his senate to overlook this condition, which Raman did not fulfil,  to offer this position to Raman. Raman had never travelled abroad nor did he  have any western training in science. This new opportunity, so graciously given by Prof Ashutosh Mukherjee, provided Raman a chance to represent the Calcutta University in a conference in England in the year 1921.  By then Raman had already produced some of the best scientific works at the IACS and he had already attained some reputation in the study of optics and acoustics. Raman’s works were known to the English physicists J. J. Thomson and Lord Rutherford, who gave Raman a warm reception in England, during his tour. Raman’s specialty had been the study of the vibrations and sounds of stringed instruments such as the violin, the Indian veena and tanpura and so also the Indian percussion instruments, the tabla and the mridangam, which he had proved had some unique characteristics that produced pure harmonics unlike the western percussion instruments. Raman made an impression on his western counterparts including the legendary JJ Thomson and Rutherford during his stay in England. 


It was the return trip from London to Bombay, aboard the SS Narkunda that would change forever the direction of Raman’s future interest in science. During the fifteen-day return voyage, Raman became fascinated with the deep blue color of the Mediterranean. He was not inclined to accept the widely believed Lord Rayleigh’s explanation that the color of the sea was just a reflection of the color of the sky. He therefore proceeded to outline his thoughts on the matter while still at sea and sent a letter to the editors of the journal, Nature, as soon as his ship docked in Bombay (Mumbai now). A little time later Raman was able to show conclusively that the color of the sea was the result of the scattering of sunlight by the water molecules. Raman  then became obsessed with the phenomenon of light scattering. Immediately on his return to Calcutta, he and his group began an extensive series of experiments and measurements of light scattered primarily by liquids but also by some solids. In less than an year after his return from England - in 1922  - Raman published his work on the “Molecular Diffraction of Light”,  the first of a series of investigations with his collaborators, which ultimately led to his ultimate discovery, on the 28th of February, 1928, of the radiation effect which bears his name (“A new radiation”, Indian J. Phys., 2 (1928) 387). One of his collaborator for this work was Dr K S Krishnan, who some people believed must have been recognised equally for the Nobel Prize. As a matter of fact, although Krishan and others worked with Raman on this subject at the IACS, it was truly Raman who firmly believed that the scattered light was a new radiation, which produced higher or lower frequency in the scattered light depending on the medium through which it passed. In one of the interviews that Krishnan has given, he firmly says that the credit for the discovery must mandatorily go to Raman, his guru and that he and his associates were incidental to the path breaking discovery by Raman. The controversy gained impetus, courtesy some politics, which provided momentum to the issue, after Raman was conferred the Nobel Prize.


It was on the 16th March, 1928 in Bangalore that Raman for the first time talked about their new discovery, in a public function.  Raman began his lecture in Bangalore with these prophetic words “ I propose this evening to speak to you on a new kind of radiation or light emission from atoms and molecules.” Professor Raman delivered this lecture to the South Indian Science Association in Bangalore. Raman, during the course of his lecture, described the discovery that, according to him, resulted from a deceptively simple experiment. This famous experiment was conducted by Raman and his colleagues at the IACS, Kolkata, far away from those great centres  of scientific research in the Western world. They had used the simplest of inexpensive equipment for their measurement. Although Raman’s original experiments were done by visual observation, precise measurements were made with their low cost spectrograph, which they had fabricated. Raman and his students, during their initial experiments, used only a mercury lamp, a flask of benzene, and a direct vision pocket spectroscope. The results that they obtained went on to capture the attention of scientists around the world and bring many accolades, including the Nobel Prize to Raman.


Raman was known for his immodesty and one such instance, which exhibits his immodesty was witnessed in Calcutta. Raman’s travel to London in 1921 and his interaction with the scientists had ensured that his works at IACS were recognised and Raman was nominated for the Fellowship of the Royal Society, London. He was subsequently elected to this prestigious body in 1924. During one of the reception parties that Raman attended in 1924 in recognition of his election to the coveted FRS, Raman is believed to have famously and immodestly stated that in less than five years he will be awarded the Nobel Prize, which later on turned out to be a reality.  Raman’s immodesty, his famous ill-tempered, autocratic and arrogant approach was probably also responsible for some of the antagonism, which in a way continued to  trouble him later in his career.  This coupled with politics and parochialism led to Raman’s ouster from the institute he loved most, the IACS. True to his immodest statement of claim, which he had made while hosting a party for his election to the prestigious FRS in 1924, that he will receive the Nobel Prize in the next five years, Raman indeed was awarded the Nobel Prize in Physics in 1930. But then this coveted recognition for Raman was the beginning of a long standing rivalry between him and Meghnad Saha another great scientist from Bengal. Saha too was an aspirant for the Nobel Prize, which most unfortunately eluded him. Moreover Saha had to move out of Calcutta to take the teaching position in Allahabad and it was not until Raman moved out of Calcutta that Saha could return back to his city Calcutta. Saha also believed that Raman was patronising South Indians at the IACS and that was at the cost of the Bengalis. All these incidents were to have a long lasting impact on the relationship between Raman and Saha. The Bengali Bhadralok’s in Calcutta started a movement in the name of Bangla Nationalism to get rid of Raman. The Nobel Prize also added to the accentuated immodest  behaviour of Raman, which only complicated the matters. By the end of 1932 the fissures started coming out in the open and there were letters to the editor in the local newspapers against Raman’s management of the IACS and the Palit Professorship. The accusations were that he had only south Indians around himself as scholars, and that physics was given too much prominence, to the exclusion of other sciences. Adding to the allegations were the major grouse that Bengalis were being sidelined in their own state. This ultimately resulted in Raman’s decision to hesitantly move out of Calcutta, the city he had made home, once and for all. In 1932 he permanently shifted to Bangalore after spending 25 long years in Calcutta.  Raman was at the receiving end of his behaviour and political opportunism of his detractors even in Bangalore. 


By the time Raman left Calcutta, the IACS and the School of Physics in the University of Calcutta had made spectacular progress in several areas. Raman’s stay at Calcutta was a  'golden era' for Physics in India. Several monumental and international standards research happened in the field of Physics at Calcutta, including works on musical instruments and of course the Raman Effect. In one of the short biographies published on Raman by P. Krishnamurthy, in 1938, he gives a list of about eighty five students who worked with Raman at Calcutta. He also lists some of the prominent areas in which Raman and his collaborators were engaged in research and the list also includes the number of research papers in these areas which are shown in parentheses. Vibrations and Sound (31); Theory of Musical Instruments (30); Wave-optics (65); Colloids (20); Molecular Scattering of Light (65); X-rays and Electron Diffraction (45); Magnetism and Magneto- optics (40); Electro-optics and Dielectrics (10); Raman Effect (100); Viscosity of Liquids (16); Atomic Spectra (8); Optical and Elastic properties of Solids (20). Krishnamurthy also states that among these published papers Raman was co-author of about 170 papers. It was not just the vast number of papers which are creditworthy but the quality of research was truly international that caught the attention of the leading scientists of the world.


JN Tata, a benevolent industrialist par excellence and a nationalist with the spirit of humanism, had conceived an Institute or University, which he intended to establish in Bangalore with an objective of providing a facility for higher learning to Indians. He was motivated to think about this institute while listening to a speech by Lord Reay, the Governor of Bombay, in 1889. Finally the seeds of developing a higher learning institute of excellence, which were sowed in the minds of JN Tata, became a reality and the Tata Institute (Indian Institute of Science now) was established in the year 1909. The institute started with three departments which were primarily focusing on applied sciences. Most of the faculty at the institute were Europeans, primarily the British including the Director of the Institute. In the year 1931, in anticipation of the fact that Sir Martin Fraser, who was the Director of the Institute, was to retire from the post of Director in early 1933, the Tatas approached the Royal Society, London, and requested them to suggest an appropriate successor, preferably an Indian, to Sir Martin Forster.  Rutherford, the Nobel Laureate in Chemistry, who was then the President of the Royal Society, suggested Raman's name, who by then was conferred with the Nobel Prize. Raman’s name for the post of Director of the Institute was later approved by two selection Committees, one in England and one in India. 


Raman took over the Directorship of the Indian Institute of Science (IISc) Bangalore in July 1933 shifting his base completely from Calcutta to Bangalore. When Raman assumed the charge of the Director of the IISC, the institute did not have a Physics Department. Moreover the research output of the Institute was not significant either by way of quality or quantity. Raman, having been a witness to the quality and quantity of the scientific research that was produced at Calcutta in IACS and the Calcutta University, felt that the IISC had become quite a ‘sleepy place’ where little work was done by a large number of “well paid people". He therefore was in a hurry to act quickly and reorganize the functioning of the Institute so that results could be seen and seen fast. Subconsciously the first thing that came to his mind to improve the situation was to start a Physics Department. He also set out to reorganise the existing Departments including the workshops. This was a time when scientists from Germany were prepared to move out of Germany. He also believed that brining in non-British European scientists to work for the institute will be beneficial to the restructuring of the Institute. Raman therefore sent out request letters to some of these scientists including to Max Bom and Erwin Schoedinger and asked them to visit or even take up long term appointments at the IISc. Although his objectives were for the larger good of the Institute, there was resentment amongst the British faculty in the Institute against this decision of Raman to invite non British Europeans as faculty members at IISc. Raman knew that most nations were making attempts to recruit German physicists fleeing the new Nazi regime and therefore he was firmly of the opinion that India too should not loose this opportunity. He therefore had managed to attract Max Born to Bangalore in 1935 on a temporary readership, which Raman intended to convert into a new chair in Mathematical Physics.


The appointment raised hackles among the faculty. An English professor of Electrical Engineering described Born as a “second-rate foreigner”. Others with nationalist commitments wanted an Indian appointed – Shyama Prasad Mookerjee, who was on the IISc council, was campaigning for a Bengali candidate. There were other reason for friction between Raman and his detractors one of which was the resentment building against Raman’s emphasis on physics. Raman had established Physics department even while the institute was facing budget cuts in the era of the Great Depression. Raman had established the physics department with a capital that nearly equalled the combined annual contributions of the Tatas, the Government of India and the Government of Mysore to the Institute. The resulting reorganisation of the other departments, together with an emphasis on hands-on workshop training also caused resentment among the the class-conscious faculty members.


The Director of the IISc was to function under the aid and advise of IISC Council, which most unfortunately had several of Raman's detractors, including Professor Meghnad Saha and Shyama Prasad Mukherjee with whom Raman had developed serious differences while at Calcutta. Therefore Raman’s plans for the improvement of the IISc did not go well with his detractors. His plans to invite non European scientists, though was very well intentioned,  became an Achilles heels for Raman and eventually on the issue of appointing Max Born, as Professor of Mathematical Physics, the Council outvoted Raman and got a Review Committee appointed to look into the affairs of the Institute under Raman. Here too Raman was at a disadvantage. The Committee mostly consisted of Raman’s detractors and included Sir James Irvine, Vice- Chancellor of St. Andrews University, Dr.S.S. Bhatnagar, Professor of Chemistry in Punjab University, Lahore and Dr. A.H. Mackenzie, Pro- Chancellor of Osmania University. The outcome of the committees finding became a foregone conclusion even before the committee submitted its formal report. When the report was submitted by the committee, it was not at all charitable to Raman and the politics was evident in its report. Shyamaprasad Mukherjee, the son of Ashutosh Mukherjee who had famously side stepped a mandated requirement for the appointment of Palit Professor to offer this Chair to Raman at Calcutta, played a role which was diametrically opposite to the patronage that his father provided to Raman. All this led to the inevitable resignation of Raman from the position of the Director of the Institute. Raman was baselessly targeted for some ill doings in the institute. Raman could serve as the Director of the Institute for just around four years from 1933 to 1937. However, even after he submitted his resignation from the position of Director of the Institute, Raman continued to work at the institute as Professor of Physics until his retirement in 1948, from the IISc.


Raman had major differences even with Pandit Nehru and he firmly believed that Nehru had his priorities wrong in investing majorly in institutes like the CSIR, which was the brainchild of Bhatnagar. He cautioned Nehru that major investments in CSIR, Atomic Energy etc, will be at the cost of the university research, which he felt would be adversely effected. He coined the phrase “Nehru- Bhatnagar effect” to describe the mushrooming of CSIR laboratories in the 1950s, predicting they would achieve little despite the massive sums spent. Raman also has to his credit mentoring two of the best minds of India - Homi Bhabha and Vikram Sarabhai who worked with Raman at the IISc. Bhabha and Sarabhai are the founding fathers of DAE and ISRO, two jewels in the Indian science. Raman was also a great mentor and a great teacher, who was so very committed to his students that it is said that he preferred to stay back with his students who were preparing their dissertation, rather than accept the invitation of the Honourable President of India to be his guest at the Rashtrapati Bhavan for receiving the Bharat Ratna award, which was bestowed on Raman. Raman also became the first National Professor. 


Post his retirement from IISc, Raman spent all his time and energy for the next 22 years of his life in establishing the Raman Research Institute, with help from the Mysore Maharaja who helped him with 11 acres of land for the establishment of the RRI. Raman continued to remain active with his research at RRI and he was also associated with the activities of the Indian Academy of Sciences, an institution , which he had founded in 1934. Raman, apart from his sustained interest in the standard fields of Optics and Acoustics, was also engaged in other areas of science which included varied topics such as the structure of crystals (especially diamond), the plumage of birds, the colors exhibited by minerals, the colors of flowers, the perception of light by the eye and the theory of hearing, the science of meteorology and so on. Perhaps, the most well-known contribution, which Raman made during this period was on the diffraction of light by high frequency sound waves, now known as the Raman - Nath theory. 


Raman, perhaps did not  participate actively in freedom movement nor was he actively engaged in any of the political activities. But then that in no way must take away the merit of his nationalistic feelings. Raman, in one of his interviews has said ‘National awakening has got other fields than politics in which it can show itself. ... I think scientific endeavour has certainly a national value, and I have heard it said that what Indian scientists, particularly physicists have done, has helped more to raise the esteem of India in the world than recent political events.” He made this statement in an interview to the Free Press of India after he was awarded the Nobel Prize. Raman had his own way to show his patriotism. There is also an apocryphal belief that Raman had tears in his eyes while receiving the Nobel Prize at the Nobel Ceremony standing under the Union Jack and not under an Indian Flag, which also alludes to his patriotism and nationalistic feelings. 


Today while the major national dailies and media has completely forgotten the legendary Raman’s birthday, I join millions of scientific community in India and abroad in remembering this colossal I dian scientists whose contributions will ever remain etched in golden letters in the annals of history of modern science in India. May you continue to remain in the hearts and minds of people Prof Raman.



Sunday, 1 November 2020

Karnataka Rajyotsav Day.

 Karnataka Rajyotsav Day.












It was on this date, 1st November, 1956, that a new state, Mysore, was born out of a divided Kannada speaking people, who were until then torn between different provinces, that the colonial rulers had put them under. On this day in 1956, courtesy the recommendations of a Committee constituted by Government of India, all the Kannada speaking people were brought together to form the Mysore state, which later became Karnataka State in 1973. The genesis for the reorganization and  formation of states on linguistic lines goes back to the beginning of the 1950, when Potti Sreeramulu,  a freedom fighter, anointed his fast unto death agitation demanding formation of the state of Andhra Pradesh, based on the Telugu language. 

Karnataka is resplendent with world renowned architecture evidenced under the rule of different kingdoms, be it the mighty Chalukyas, the Hoysala, Vijaynagar, Adilshahi, Wodeyars, the Rashtrakutas. It is home to the largest number of the majestic Tigers, Elephants and is a land of Sandalwood and coffee. The rich Kannada literature has helped eight of the scholars to be bestowed with the highest literary award - the Jnanpith award. It is dubbed the silicon valley of India, whose strength created that fear even for Barack Obama, who spoke of people of Buffalo loosing jobs to Bangaloreans,  thus making the word Bangalored enter into the lexicon of the English dictionary. 

The formation of states on linguistic basis started with the struggle and agitation by the Telugu-speaking people, in the begining of 1950s, who wanted a separate state of their own. Unfortunately the Madras State led by C Rajagopalachari, was not particularly sympathetic to this  demand.  Pandit Nehru was swayed by the sentiments and opinion of Rajagopalachari and therefore he too was not very sympathetic to the demands of the Telugu speaking people. This led to an agitation, which was spearheaded by Potti Sreeramulu, who started that quintessential Gandhian style of satyagraha - fast unto death - on 19 October, 1952. The then prime minister, Jawaharlal Nehru, assured his support for the creation of Andhra Pradesh and requested Potti Sreeramulu to end his fast. But since there was no written commitment nor was a formal public statement made to this effect by Nehru, Sreeramulu continued with his fast. This led to the spread of agitation in the Telugu speaking region of the Madras state and resulted in public unrest. On that eventful day - 15 December 1952 - Sreeramulu died after about 58 days of his fasting. His death resulted in widespread rioting and violence in many regions in Andhra. A few people were killed in firing by the police. Protests continued and when things seem to take uglier turn, on 29 December, Pandit Nehru announced his decision to form a separate Andhra state on linguistic basis. Accordingly, on 1 October, 1953, the Andhra State was formed with its capital at Kurnool, near to my native place Raichur. 

The formation of Andhra Pradesh led to the reorganisation of the Indian states on the basis of languages. In August 1956, Parliament enacted the States Reorganisation Act, which called for states to be redrawn along linguistic lines by November 1 of that year. And one of the states to be formed on the basis on this Act was the state of Mysore, which was formed on  1st November, 1956 that later became the state of Karnataka in 1973.  Until 1956, the states in India had largely retained the political boundaries left by the British. The state of Mysore was formed out of four different parts of India, which had majorly the Kannada speaking population namely ; - Mysuru Karnataka, Mumbai Karnataka, Kalyan Karnataka and parts of Madras Presidency.  The States Reorganisation Act of 1956, which was based on linguistic division has enabled people to nurture and promote their language and their respective culture in which the language is inextricably intertwined with culture. 

Some of the prominent leading lights of the state of Karnataka include Ranna, Pampa, Basavaveshwara, Allama Prabhu, Akkamahadevi, Sarvgna, Shishunala Sharif, Kuvempu, Bendre, Shivraam Karanth, Masti, Gokak, Karnad in literature. Much before the first war of Independence waged by the legendary Rani Jhansi, Kittur Channamma in Karnataka had blown the bugle of freedom from the British and was helped by her strong man Sangolli Rayanana. 


https://khened.blogspot.com/2019/10/sangolli-rayanna-forgotten-freedom.html


Anubhava Mantapa was one of the foremost democratic parliamentary style of governance, which began in Karnataka during the 12th century, much before what we now know as parliamentary democracies began anywhere in the world and this was led by Basaveshwara, a remarkable visionary.


https://khened.blogspot.com/2020/04/basava-jayanti-birth-anniversary-of.html


Here is another blogpost on the majestic Ibrahim Roza : https://khened.blogspot.com/2020/04/the-majesty-of-ibrahim-rauza-monument.html

A birds eye view and a tapestry of the state and its vibrant culture can be seen in the accompanying visuals, courtesy Wiki Commons. 


Wishing you all a very happy Karnataka Rajyotsava Day.

Decadal Reminiscence of “Deconstructed Innings: A Tribute to Sachin Tendulkar” exhibition

Ten years ago, on 18 December 2014, an interesting art exhibition entitled “Deconstructed Innings: A Tribute to Sachin Tendulkar” was open...