Tuesday, 25 January 2022

25 January, National Voters Day – Hailing the Great Indian Democracy.


The Miraculously Successful Indian Democracy owes its genesis to the Voters, let us hail them all on the National Voters Day today. Today as we celebrate the 12th National Voters Day, which is commemorated every year on January 25 – the foundation day of Election Commission of India, which was established on January 25 1950 - to encourage the voters to participate in the electoral process, it is time to look back and commend ourselves – the voters – who have helped make Indian democracy a celebrated global success and may the national voters day help in continuing to keep the Indian democracy thriving with more and more people going out to exercise their all-important voting rights.

The success of the Indian democracy owes its genesis to we the people of India, particularly the main stakeholders of Indian democracy – the electorates, political parties, election commission of India, and everyone else. If we look back in time and see what our status was when we attained our independence, not many would have predicted – including the optimists - that India as a democracy would survive for more than few decades or so. The position in which we were left behind, when we attained our independence, after centuries of colonial rule and exploitation by the British is best articulated, so thought provokingly, by Shashi Tharoor in his famous book “The Era of Darkness –The British Empire in India”. Therefore, it was no wonder that there was no optimism in the future for Indian democracy when we attained independence.  

What the odds were for India succeeding as a thriving democracy, when we attained independence, can best be seen when we juxtapose Indian democracy as a start-up company in 1947. Not even the most adventurous and risk taking venture capitalists would have considered investing in the Indian democracy. More so since there were many dooms day predictions made by the British, an evidence of which can be best seen from the last British commander in chief of the Indian Army, Gen. Claude Auchinleck. He wrote “The Sikhs may try to set up a separate regime. I think they probably will and that will be only a start of a general decentralization and break-up of the idea that India is a country, whereas it is a subcontinent as varied as Europe. The Punjabi is as different from a Madrassi as a Scot is from an Italian. The British tried to consolidate it but achieved nothing permanent. No one can make a nation out of a continent of many nations.”

 

Gen. Claude Auchinleck was not the sole voice to make such dooms day prediction for India, which was a nation within nations with as many as 565 princely states and many more divisions when we attained Independence. Helped by Sardar Patel India was united to carve out its geographical and political map that we see today. Dooms day predictions for India and Indian democracy were dime a dozen in the early years of independence. India could not survive as a single nation, was one common observations by most western observers, let alone becoming a successful democracy. One of the former British official, who witnessed the first general elections in India in 1952 wrote “a future and more enlightened age will view with astonishment the absurd farce of recording the votes of millions of illiterate people.” From such negativity and dooms day predictions, Indian democracy has passed through periods of trials and tribulations to emerge triumphant and today when India is commemorating the 12th National Voters Day, while commending ourselves and patting us on our back, we must resolve to spread the message of the importance of voting in a democracy and each of us must go out to exercise our democratic rights without fear or favour.

The forthcoming state elections including the elections in the most important state of Uttar Pradesh and that too during the Covid times is a time for us to pay respect to the people’s mandate and hail the electorates, the Election Commission and its paraphernalia that include the faceless hundreds of thousands of foot soldiers of the Election Commission who work tirelessly making the Himalayan task of conducting the elections in India a grand success, time after time and election after elections. Democracy in India has gained from strength to strength and has made much progress over the decades. When we attained independence and declared ourselves Republic in 1950, our erstwhile rulers the British and the rest of the world were highly cynical about our survival, let alone our democracy. From the first elections in 1951-52 to the 17th general elections held in 2019, we have come a long way and our democracy has grown from strength and the world now treats Indian democracy as a triumphant role model. Let us cherish this.

The continuing success of the Indian democracy is borne out from the statement made by our former President Dr Pranab Mukherjee, who praised the voters and the Election Commission for conducting the 17th Lok Sabha polls in a “perfect” manner. He went on to say “If we want to strengthen institutions, we have to keep in mind that institutions are serving well in this country, and if democracy has succeeded, it’s largely due to the perfect conduct of elections by all Election Commissioners starting from Sukumar Sen to the present Election Commissioners”. So irrespective of who wins the coming state elections, we must all collectively respect the result as a true mandate of the voters, who must go in large numbers to exercise their voting rights.

Ever since the era of TN Seshan, in the early 1990s, the EC, like the Indian Army, has arguably become our most respected institution. The respectability of the EC can further be appreciated when we realise that the EC has helped several other nations run their elections better. EVMs have played a significant role in this transition, which has seen a drastic reduction in voting malpractices.

Central to the beauty and vibrancy of the Indian democracy are the Indian electorates - the rich and mighty, the powerful and powerless, the poor and the insignificant, the lettered and unlettered, sheltered and unsheltered, the males, females and the trans gender’s, the believers and non-believers, Hindus, Muslims, Parsis, Sikhs, Christians, Jains, Buddhists, religious and non-religious, young, middle aged, old and the very old - all standing as equals, each rubbing shoulders with one another, in the true spirit of equality and humanity first, who make our democracy thrive. While we celebrate the National Voters day today, let us reemphasise the significance of voters for the success of the Indian democracy.

A look back on the percentage of voters who exercised their franchise during the general elections reveal that in the very first general elections conducted in 1952, India recorded an impressive 61.2% of votes and this number continued to be quite impressive hovering around 60% or so (62.2% in 1957, 55.42 in 1962, 61.33 in 1967, 55.29 in 1971, 60.49 in 1977, 56.92 in 1980, 63.56 in 1984, 61.95 in 1989, 56.93 in 1991, 57.94 in 1996, 61.97 in 1998, 59.99 in 1999). The voting percentage fell abruptly to below 50% for the first time in the fourteenth general election held in 2004, to 48.74%.  This was the time when it was realised that efforts are needed to create an awareness among visitors about the importance of voting.  

The first-ever National Voters’ Day was celebrated on January 25, 2011, to encourage more young voters to take part in the electoral process. The then Union government, led by Prime Minister Manmohan Singh, approved a proposal of the law ministry to declare a National Voters Day. The then information and broadcasting minister, Ms. Ambika Soni pointed observed that new voters, who attained the age of 18, were showing less interest in getting enrolled in the electoral rolls. To address this issue, the Election Commission decided to launch a nationwide effort to identify all eligible voters who reach the age of 18 on January 1 of each year in all polling stations across India. All such new voters were to be enrolled and given the Electoral Photo Identity Card (EPIC) on January 25 every year.

 

The National Voters Day seem to have had some positive impact. The 16th general election held in 2014 witnessed 66.40% voting and in the 19th general election, held in 2019, the voting percentage witnessed a record 66.40%, the highest ever in the history of Indian general elections. The theme for this year’s National Voters' Day is ‘Making Elections Inclusive, Accessible and Participative’. I earnestly hope that the National Voters day helps in continuing to increase voter’s participation in the Indian democracy.

 Jai Hind, Jai Indian Democracy and Jai Indian Voters. 


 

Sunday, 9 January 2022

National Science Centre, New Delhi turns Thirty - Recalling My Tryst with this Centre





It was on this day 9th January, 1992, 30 years ago,  that the National Science Centre, Delhi (NSCD) was dedicated to the nation by the then Prime Minister of India, Shri PV Narsimha Rao. While wishing the Centre all the very best, I am inclined to recall my close association with the NSCD, where I worked in two innings for nearly 17 years ( August 1988- April 2001 and March 2007 to December 2010) and narrate two interesting  anecdotes that I had the honour to experience. 


The first incident of course relates to the inauguration and its arrangements. The NSCD was successfully opened on 9th January, 1992, by the then Prime Minster Shri Narasimha Rao in the presence of a galaxy of dignitaries including the then HRD Minister Mr Arjun Singh, Prof HY Mohan Ram, Dr AP Mitra, Dr Saroj Ghose and all the founder Directors of the National Council of Science Museums (NCSM).


A couple of days before the NSCD was to be opened, a major goof up had happened at the Siri Fort Auditorium, where the public address system had failed when the Honourable President of India was addressing the gathering. This was all over the news and had caught the attention of Dr Saroj Ghose, the then Director General, NCSM.  Dr Ghose had therefore camped himself in Delhi and was personally overseeing all arrangements for the PM Visit to the NSCD and its inauguration. He had tasked key officers with specific duties and responsibilities and that included yours truly as well. I was tasked with the arrangements of all audio visuals and PA system arrangements inside the auditorium, where the inauguration was to take place. Besides me he had also tasked other key officers with different responsibilities. All of us had burnt our mid night oil and had put in all possible efforts to make the opening a grand success. Dr Ghose was privy to the hard work we had all put in. On 8th January late evening around 8 PM or so Dr Ghose called us to take final stock of the arrangements for the opening of the NSCD by the Prime Minister next morning. 


After all briefing was done with and when we were about to break for the day, Dr Ghose showed a small piece of white paper and asked us if any one could guess what is written on the paper. No one hazarded a guess. Dr Ghose was such a towering personality that even senior Directors and officers like, Mr RM Chakraborty, G Nagarajan, IK Mukherjee, PK Bhaumik, S Goswami , TK Ganguly, Amit Sarkar etc. hardly ever ventured into such acts, so how could the junior mortals do so. When the silence was getting eerie, he announced in his inimitable commanding voice, it is his resignation, which is dated 10th January, 1992. When we were trying to come to terms with the situation, he told us that he is very confident that everyone of us has worked very hard to make the event a grand success and so will it be. However, he said, if anything untowardly happens and some thing or the other fails, he would own up the entire responsibility of the failure and would submit his resignation, which he had prepared and brought to show it to us. He asked us do you want that to happen? We unitedly and with one voice shouted no Sir. Dr Ghose jokingly said, if so keep all your resignations in your pocket ready like what he has done. He then created a relaxed situation for all of us by sharing light hearted moments in the making of the centre including showing that rare face of his to crack jokes to ease our tensions. He left us all by telling that tomorrow’s program will definitely be a great success. We went completely motivated and geared up for the opening. Here I learnt my first lessons in leadership at NCSM - to lead from the front.


The second experience that I wish to share is something which I called ‘ From Denial to Discovery’. Incidentally I presented a paper on this subject to other fellow museum professionals in a workshop presenting a case study of the NSCD and how it managed to double its visitors in the year 2007-08.  


Ever since the opening of the NSCD on 9th January 1992, barring one year, the average visitors to the centre had hovered around 2 Lacs per year until the year 2007-08. In fact the visitors had gone far below 2,00,000, from the year 1999 or so onwards primarily because the backside entry to the centre from the Trade Fare exhibition from Pragati Maidan had closed down. The only time the visitors to the NSCD had come close to 4,00,000 was in the financial year was in 1996-97, when we had organised that famous ‘Dinosaur Alive exhibition’, which was a roaring success and in just 45 days we had receive more than 2 lac visitors and tonnes of gate entry. 


I was posted back to NSCD from Mumbai in  March 2007 and this time I was tasked to be the Director of the Centre. Since I had worked in Delhi before and had also known all the curators and other officers of the centre, I was expecting a smooth run and so it was. Immediately on my taking charge I organised a officers meeting to brain storm on various issues, which could benefit making the centre more popular and  how we could increase the foot falls. I took the liberty that I knew all of them for many years, and announced to them a challenge that I had tasked ourselves with - to double the visitors to NSCD in the financial year 2007-08 and make it 3,50,000.


Little did I realise that being a colleague is completely different than holding a post of a Director to the colleagues. I was in an illusion that my challenge and the brain storming meeting that I had with my colleagues, would have energised them. But then, contrarily, I learnt that there were discussion among the officers that how Tughalaqi and stupid was my target. I got this feedback from those channels, which are dime a dozen in most government offices, who are always there to report such matters, whether you want or not, to scurry favours. I overlooked the feedback and kept speaking again and again about the target and held innumerable brain storming meetings to find ways and means to meet this target. The education officers and curators concerned worked very hard on whatever we discussed to try and translate that into visitors. One such non visitors were students from the Madrassas who came in large numbers, besides of course many others. We had organised meetings with the Maulvis of these Madrassas and highlighted the role played by great Arabian scholars like Alkhworizmi, Al Jebr and others in the field of science and how the Arabs translated many of the Indian works into Arabic and took them to the Europeans. Though the task was quite tough the Maulvis over a couple of meetings found sense in what we were suggesting and ensured that their students visited the NSCD. 


We organised many Principals meet, teachers meet, NGOs meet and also met the top people in the Delhi Government, including the the then CM of Delhi, Mrs Sheila Dixit, and things started falling  in place and the visitors gradually started increasing. The first quarter showed increased numbers which further motivated the team. By the time we ended the third quarter in December,2007  the foot fall had touched 3,00,000. By early February, 2008, we had achieved the target of 3,75000 and when we crossed 4,00,000 by end of February the very officers who had clubbed my vision as tughalaqi, joined hands and made personal contributions to purchase sweets from the market for distribution to all staff members when the visitors to the centre had crossed 4 Lacs. I called this moment a moment of ‘denial to discovery’, a great learning lesson ‘that together we can achieve’ an impossible. The target to double the visitors to the centre was not only achieved but it was surpassed by more than 50,000 as we ended the year 2007-08 with an annual visitors of 4,28,000 visitors. The success was truly and befittingly that of the team and I was just incidental to this achievement.


Ever since that year the NSCD has never looked back ( barring the current Covid times) and has consistently crossed foot falls of 5 Lac every year and even touched a magical figure of 7 Lacs before the pandemic set in. I am so very honoured to have played an incremental role in this spectacular achievement.


So very proud of you all my dear colleagues at NSCD, both past and present.  Wishing the National Science Centre Delhi  a very happy birthday and may the NSCD continue to scale newer and newer heights and be etched  in the hearts and minds of all the people of Delhi, who truly are it’s stakeholders.


Images - Courtesy Biswarup Ganguly and Wiki Commons.


Jai Hind

Jai Vigyan Jai 


Friday, 31 December 2021

New Year 2022 - Spare a thought for the calendars, which helps us record history.

New Year 2022 - Spare a thought for the calendars, which helps us record history. 






Calendars have helped us record history including events that unfolded in the year 2021, which will soon be history. The new year 2022, which we will soon be welcoming, is an outcome of the modern day calendars that have evolved from the creation of human ingenuity that defines years, days and months, which are inextricably linked with our lives and our history. Calendars are designed based on scientific system to reckon time in periods convenient to the conduct of our day today lives and help us knit in sync with each other - cutting across time and space -  and in chronicling our collective history for posterity. As we inch towards scripting the end of the year 2021 and prepare ourselves to welcome dawn of the new year 2022, while wishing you all a very happy and healthy new year 2022, I am tempted to invoke Alfred Tennyson ; ‘Ring out the old, ring in the new, Ring, happy bells, across the snow: The year is going, let him go; Ring out the false, ring in the true.” - Alfred Tennyson. 


This saying is so very relevant when we look back at the tumultuous bygone year 2021, which continued to be plagued by the COVID 19 pandemic that rampaged the world taking away millions of precious lives, including the life of our class Buddy, Vice Admiral Srikant and our dear friend Dr Ratnashri, Director, Nehru Planetarium, New Delhi and million more lives. The year 2021 was also the year when I attained that important milestone of shasti purti ( 60 years) and retired from service - 31st May, 2021 -  after serving for 35 years in the field of science museums working with the National Council of Science Museums, Ministry of Culture, Government of India.


The two previous years, 2020 and 2021 will infamously go down the memory line as the years that were plagued by the Covid Pandemic. More than 5 million (5,445,249 to be precise as on 31 December 2021) people across the world have succumbed to the pandemic and India too has been adversely impacted with more than 38 million people affected by Covid and more than 4.5 Lac people have fallen victim to this dreaded SARS-COV2 virus. The Covid 19 has reminded the world of how fragile we are in front of the all encompassing nature and its attributes and how even a minuscule SARS- COV2 virus can rampage the world. We must  therefore learn to respect nature and not abuse it, which seem to be one of the plausible reason for the spread of this virus from the city of Wuhan, China, which is hiding more than what meets the eyes when it comes to sharing the actual data and reasons for the spread of this virus from the city of Wuhan. It is therefore an apt decision that the new year 2022 is befittingly declared as the International Year of Basic Sciences for Sustainable Development. It is basic science that can help humanity and when this is applied for sustainable development it augurs well for the people and our planet earth, which seem to be under pressure from anthropomorphic impacts which has raised exponentially in the past couple of decades. 


As we prepare ourselves to welcome the new year 2022 by bringing down those ubiquitous old calendars to make way for the new calendar, let us all join in praying for all those precious lives lost due to the COVID 19 pandemic and salute our health workers and COVID warriors - including the foot soldiers who have ensured that more than 1.3 billion vaccine doses have been administered in India by reaching out to far flung areas - who are continuing to battle this out. This new year the world must once again stand united as one in combating this pandemic and pray that the Dawn of the New Year 2022, heralds a beginning of a kindly light, which once and for all vanquishes SARS-COV2 virus in all its variants, including the Omicron, and help us all to lead a normal life which was majorly disrupted.


Now that the year 2021 is behind us it is time to spare a thought for human ingenuity in creating calendars and how calendars have evolved over time. Calendars are inextricably linked with our lives and are designed based on scientific system to reckon time in periods convenient to the conduct of our lives. Calendar has its origin from the Roman word Calends or Kalends,  meaning a method of distributing time into certain periods adopted for the purpose  of civil life. The story of the calendar begins with the fascinating history of mans endeavour to organize our lives in accordance with celestial cycles. Three of these celestial bodies - the earth, moon and the sun - are central to the formulation of calendars. All calendars are founded upon some combination of the movement of these celestial bodies. Moon has always influenced the timing of different religious festivals, and seasons, and the Sun has influenced the time of sowing and harvesting. Calendars based on observations of moon are called the lunar calendars and those based on the observations of the Sun are called the Solar calendars and these two calendars have been used widely in different cultures of the world; Chinese, Hebrew, Islamic, Gregorian and our very own Hindu calendars. While each of these calendars are unique in how they are used, however, they all share a set of common features borrowing from each other.  Like all great efforts that require dedicated collective work of a group of people, the establishment of a standardised calendrical system was no trivial matter. It required knowing how to make observations, which observations to make, and how to keep records over a long period of time. 


One of the oldest calendar systems is our very own Hindu calendar, which is based on the lunar revolutions and included adjustments (intercalation/extracalation) to solar reckoning. It divides an approximate solar year of 360 days into 12 lunar months of 27 days each according to the Taitriya Samhita and Atharva Veda. The resulting discrepancy of 26 days, was resolved by the intercalation of a leap month every 60 months. The months were counted from full moon to full moon and were divided into two halves, Shukla paksa of waxing period and Krisna paksa of waning period. The new moon days were observed as Amavasya and full moon as Purnima and most religious rituals were performed around these two events. Each of the month has thirty days (tithi) and the day (divasa) thirty hours (muhurta). A new form of astrology that is in vogue today is based on the old Hindu calendrical system, which did under go a change in its classic form according to the Surya siddhanta around 4-5th century AD. The year was divided into seasons, ऋतु, spring (वसॉन्था) from mid March until mid May; summer (ग्रीष्म), from mid May until mid July; the rains (वर्शा), from mid July until mid September, autumn (सरद) from mid September until mid November and winter (हेमन्त) from mid November until mid January and the Dews (सिसिरा), from mid January until mid March.


Most calendars had some or the other discrepancy, which needed correction. The discrepancy in the Indian calendars and controversy associated with it can be traced back to the period of the great epic Mahabharata. The epic mentions two periods - the Vanavasa (period of exile) and the agnyatavasa (the period of incognito living) - which the Pandavas were mandated to observe in obeisance of Yudhisthar’s commitment to the Kauravas. The epic battle of Kurukshetra was fought with a consideration that the Pandavas, according to Duryodhana, failed to keep their promise to stay in exile for twelve years and in hiding for one year. However, Bhisma reckoned that the Pandavas adhered to their promise and observed the two periods. Bhisma substantiated his argument with the fact that the calendar adds an extra month every five years. The interpretation of the calendar or the complications involved in the calendar making are therefore legendary.


From historic times calendar makers have relied on the sunrise and sun set to determine the day, while the period between the full moon determined the month. Even in modern times celestial bodies continue to provide the basic standards for determining the measurement of the day, month and the year. The day can be measured either by the stars or by the sun. If stars are used, then the interval is called the “Sideral day” and is defined by the period between two passages of a star across the meridian. The mean Solar day is 24 hours, 3 minutes and 56.55 seconds long. The measurement of the month is determined by the passage of the moon around the earth. There are two kinds of measurements for the month, first, the period taken by the moon to complete an orbit of the earth and second, the time taken by the moon to complete a cycle of phases. The former is defined as the orbital month. However, the problem with this measurement stems from moon's orbit, which is elliptical and it will be travelling faster when closer to the earth (perigee) and slower when further away (apogee) and therefore it has anomalies. The Anomalistic month is the time between perigees (27.55455 days mean value). The second measurement of the month by the phases of the moon is called the synodic month (synod = meeting, in astronomy it means conjunction or lining-up) which measures 29.53059 days.The synodic month forms the basis of the calendar month.


Determining the length of the year also has its own problems. The Earth does not rotate whole number of times for each revolution of sun. The Sidereal year is the time for the Earth to return to the same position relative to the fixed stars, which measures  365.25636 days and its mean value increases by 0.00000012 days per century. Because it is slightly longer than the tropical,  the equinoxes will gradually creep westward around the ecliptic by 1 in 71.71 years or 360 in 25800 years. The common year is called the Tropical year meaning the time between spring equinoxes (365.24219 days mean value decreasing by 0.00000614 days per century). Because the Earth's orbit is elliptical it will travel faster at perihelion (closest, now early January) and slower at aphelion (furthest, now early July). This means that the season around perihelion will be shorter than the one around aphelion. Currently the gaps between equinoxes and solstices are, starting at the Northern Hemisphere Spring Equinox, 92.72, 93.66, 89.84, and 88.98 days. The southern hemisphere gets a few extra days of winter and the northern hemisphere gets a few extra days of summer. Choosing either of the years leaves the calendar maker in an awkward position of having the following New Year beginning in the middle of the day.


The Julian Calendar : Of the several calendars of antiquity, the Egyptian and the Roman calendars developed into the Julian calendar, which was used for more than 1500 years. The Roman republican calendar, introduced around 600 BC, was a lunar one, short by 10.25 days of a Tropical year. It included an extra intercalary month, every two years, which fell in late February. Nonetheless, by around 50 BC, the lunar year had fallen eight weeks behind the solar one, and it was clear that the Romans were out of Sync. There was total confusion when Julius Caesar came to power as the Roman’s 355 day lunar calendar was 80 days out of sync with seasons when Caesar took the throne. Julius Caesar, it is believed got acquainted with the Egyptian calendar on the same trip during which he got to know Cleopatra. He then came in contact with the famous Greek Egyptian astronomer, Sosigenes. In the year 46 BC, Sosigenes convinced Julius Caesar to reform the calendar to a more manageable form. Sosigenes' message to Caesar was that the moon was a nice god but knew nothing about when things happen. Armed with this information Caesar returned to Rome and made big changes. The old lunar system with intercalary months was abandoned and a new solar system was introduced with fixed month lengths making 365 days and an intercalary day every forth year in February which would have 29 or 30 days. To shift the equinox back to March 25 he added three extra months to 46 BC, making it 445 days long ('the year of confusion') and the Julian calendar began on 1st January 45 BC.  In recognition of his contribution to the calendar reforms the month of July is named in his honour.


Caesar’s nephew Augustus (originally named Octavius) also did some cleaning up of the calendar, details of which however are not very clear. One source (Britannica) suggests that the priests got the leap years wrong having one every third year for forty years so he had to skip a few until 8 BC. In recognition of this, they renamed Sextilis with August in his honour but had to pinch a day from February to make the month of August have the same length of days as July. The tradition has lasted until today and therefore contrary to any logic the immediate months of July and August have 31 days each.


Anno Domini : Things went smoothly for a while; the seasons were finally put in proper place in the year and festivals were happening at sensible times - almost. At the Council of Nicea in 325 AD, Easter was decreed to be the first Sunday after the full moon after the vernal equinox. The early Christians were keen to cleanse contrary ideas (like the spherical Earth) so in 526 AD; the Abbot of Rome, Dionysius Exiguus proclaimed that the birth of Christ should be the event from which years are counted. He also calculated the event to be from December 25 and asserted that it should be called 1 AD (Anno Domini = in the year of our Lord) and the year preceding it should be called 1 BC (now meaning Before Christ) with prior years counted backwards. The omission of a year zero was a dumb idea.  About this time the seven day week was introduced. Although it may have appeared earlier in the Jewish calendar and also in the Hindu calendar, it was tidied up in the fourth century. Cycles of four to ten days had previously been used for organising work and play. Seven was chosen apparently in acknowledgment of the Genesis story where God rested on the seventh day although there is a strong suggestion that it also reflected the seven gods visible in the sky as the planets, sun and moon. 


Pope Gregory XIII : By the middle ages the seasons had slipped again. Pope Leo X tackled the problem in 1514 AD by engaging a number of astronomers, including the famous Copernicus, who quickly recognised that there was a more fundamental problem than rearranging the calendar and suggested the rearrangement of the universe by putting the sun at the center as against the earth. The Church though did not accept the suggestions. Half a century later Pope Gregory XIII was sane enough to have another go to sort out the discrepancy and assembled a team of experts, led by the German mathematician Christoph Clavius(1537-1612) and Italian physician and Astronomer Aloisius Lilius who spent ten years finding a solution to the problem. By 1582 AD the Julian calendar was full 13 days behind the seasons. By then the Christian churches had scheduled certain of its feasts, such as Christmas and the saint’s days, on fixed dates. The Julian calendar, which was running 13 days behind the sun, had little or no effect on the lives of the ordinary folks, but it disturbed the functioning of the Church, because it pushed the holy days into wrong seasons. This prompted the church to issue clearance to Pope Gregory XIII to implement necessary changes in the calendar.


Gregorian Calendar : The change made by Gregory XIII to the calendar envisaged skipping ten days, sometime to bring the seasons back in line and skip a few leap years now and again. The extra day every fourth year is too much so skip the leap year at the end of the century. This is now a touch short so put back a leap year every fourth century. The leap year is therefore defined as a year if it is a multiple of 4. However if the year  is a multiple of 100 it is not a leap year. There is an exception to it. If the year is a multiple of 400 it will once again be a leap year. Since this still produces an error of a day in 3,323 years we will also be skipping the leap year in 4000 AD. Applying all these principles in 1582, Pope Gregory XIII, decreed that the day after October 4, 1582, would be October 15, 1582. And according to the prescribed rule 1600 was a leap year but 1700, 1800 and 1900 were not and the year 2000 AD was again a leap year.  


The changeover to the Gregorian calendar was not smooth. France, Spain, Italy, and Portugal changed in 1582; Prussia, Switzerland, Holland, Flanders and the German Catholic states in 1583; Poland in 1586 and Hungary in 1587. The Protestant countries weren't too keen to follow, so for nearly two centuries there were two calendars running in Europe ten days apart. Matters came to a head in 1700 when the Protestants had a leap year and the Catholics didn't, increasing the gap to 11 days. Denmark and the German Protestant states changed in 1700 and Sweden came up with the brilliant plan of simply skipping all leap years until they caught up in 1740. England and America switched over in 1752, skipping 11 days by making September 3 as September 14 and shifting the start of the year to January 1. There was much unrest in the US - 'give us back our eleven days' was a popular campaign slogan.  Many other countries were slow to adopt the standard and it was not until the early twentieth century that the entire world was finally synchronised. Japan changed in 1872, China in 1912, Bulgaria in 1915, Turkey in 1917, Yugoslavia and Rumania in 1919 and Greece in 1923. The Gregorian calendar is now recognised world wide although there are still many other calendars running alongside it, for religious purposes. 


In India calendar reform took place in 1957., under the chairmanship of Meghnad Saha, eminent scientists and a parliamentarian. The National Calendar of India is a formalized lunisolar calendar in which leap years coincide with those of the Gregorian calendar (Calendar Reform Committee, 1957). However, the initial epoch is the Saka Era, a traditional epoch of Indian chronology. Months are named after the traditional Indian months and are offset from the beginning of Gregorian months. In addition to establishing a civil calendar, the Calendar Reform Committee set guidelines for religious calendars, which require calculations of the motions of the Sun and Moon. Tabulations of the religious holidays are prepared by the Indian Meteorological Department and published annually in The Indian Astronomical Ephemeris. Despite the attempt to establish a unified calendar for all of India, many local variations exist. The Gregorian calendar continues in use for administrative purposes, and holidays are still determined according to regional, religious, and ethnic traditions. Years are counted from the Saka Era; 1 Saka is considered to begin with the vernal equinox of 79 AD. The reformed Indian calendar began with Saka Era 1879 AD, Caitra 1, which corresponds to 22nd March, 1957. Normal years have 365 days; leap years have 366. In a leap year, an intercalary day is added to the end of Caitra. 


We have no zero year hence the years that predate Christian Era ( now reclassified as Common Era) are chronicled as Before Common Era - BCE and those that come later are chronicled as Common Era CE.  Calendars have held sacred status, for they help us in maintaining social order, provide the basis for planning of agricultural, economic and industrial activities and so also in chronicling our collective history for posterity.  Calendars also provide basis for maintaining cycles of religious and civil events. As we prepare ourselves to welcome yet another new year, let us spare a thought for the makers of the calendars.


Once again wishing you all a very happy New Year 2022.

Tuesday, 21 December 2021

Srinivas Ramanujan: Namagiri Gifted Math Genius for whom “Every positive integer was one of his personal friend”.

 Srinivas Ramanujan: Namagiri Gifted Math Genius for whom “Every positive integer was one of his personal friend”.















India celebrates 22nd, December, the birthday of the legendary mathematician - Srinivasa Ramanujan, as the National Mathematics day. The legendary Ramanujan was born on 22nd December in Erode, Tamil Nadu in the year 1887 and in the brief period that he lived (1887-1920) he has left behind a legacy, which will perpetuate for generations to come not just in India but globally. The genius of Ramanujan and his goddess – Namagiri - gifted mathematics has remained an enigma, which is evidenced from the foreword that was written by CP Snow, friend of GH Hardy who was the mentor of Ramanujan. C.P. Snow, in his preface to Hardy’s remarkable memoir, ‘A Mathematician’s Apology’, writes; ‘Hardy did not forget that he was in the presence of a genius - Ramanujan’. GH Hardy, considered as one of the leading mathematicians of the world, had profound respect for Ramanujan’s genius in maths which is evidenced in another incident that Hardy narrates to his friend CP Snow. Hardy says ‘Ramanujan really had the natural genius. in the sense that the greatest mathematicians had it’. Hardy on another occasion modestly says ‘I have done one thing that most others could never have done, and that is to have collaborated with the greats like Ramanujan on something like equal terms’. The legend and the myth that surrounds Ramanujan and his Namagiri goddess gifted genius in mathematics, therefore, comes from such examples, which are seen from the statements and experiences of GH Hardy and other great mathematicians of his times.

 

Our admiration for Ramanujan grew exponentially while researching for curation and development of an exhibition on the life and works of Ramanujan, during his 125th birth anniversary - 2012. The government of India had announced celebration of the 125th birth anniversary of the great Srinivasa Ramanujan and while announcing the celebrations, the then Prime Minister of India, Shri Manmohan Singh, declared that the birth day of Ramanujan will be celebrated and commemorated as the National Mathematics Day, and ever since 22nd December - the Birthdate of Ramanujan - is celebrated as the National Mathematics Day.

 

The first thing that came to our mind when developing an exhibition on Ramanujan was the well-researched biography book on Ramanujan, which was published by Robert Kanigel entitled “Srinivas Ramanujan: The Man Who Knew Infinity”. During the early days of discussion on the curatorial concept and the approach that we should adopt for developing this exhibition, was to ensure that the subject of maths, which is considered abstract and hard to comprehend, must be made simple, experiential and interactive. We also felt that apt title for the exhibition would be the title of Robert Kanigel’s Book - Srinivas Ramanujan: The Man Who Knew Infinity. We therefore sought permission from Dr Kanigel for using the title of his book for our exhibition. Kanigel was very kind to permit us to use this title for our exhibition. We worked on a different presentation style for the exhibition and for the first time attempted some new digital interactive techniques to present the complex math that Ramanujan carried out in a manner which could be appreciated by our visitors, particularly, school students. This exhibition was successfully opened in December 2012 - the 125th birth anniversary of Ramanujan – by Padma Bhushan, Prof M S Narasimhan, FRS and a Member, National Committee, for National Mathematics Year, at Visvesvaraya Industrial and Technological Museum, Bangalore.

 

The exhibition received overwhelming response and appreciation, particularly the digital immersive experience and interactive presentations to present the life and works of the legend. The exhibition also had a lesson for our youngsters that failure is something which has not eluded even the great Ramanujan and therefore students must not be afraid of failures. In his authoritative biography of Ramanujan, Kanigel states that ‘Ramanujan appeared for the Intermediate examinations four times and failed in all of them’. “Except for maths he did poorly in all his subjects. … He would take the three-hour maths exam and finish it in thirty minutes.” T.V. Rangaswami’s Tamil biography (‘Ragami’) on which Kanigel’s account of Ramanujan’s early life is largely based, states that ‘Ramanujan appeared for the F.A. examination three times and failed’. Ragami, however, adds that in his last attempt, in 1907, Ramanujan got a centum in mathematics. David Leavitt in his book ‘The Indian Clerk (2007)’, underlines the repeated failures of Ramanujan in his intermediate examinations, a point reiterated by the Ramanujan Museum’s website: “Appeared privately for F.A. examination, secured centum in mathematics, but failed to secure pass marks in other subjects.” Our exhibition effectively communicated a lesson from Ramanujan that failures are integral to one’s life and that includes some of the greatest of scientists as well. 

 

Notwithstanding his multiple failures in intermediate exam one thing remained certain for Ramanujan. His love and passion for maths never attenuated, rather he pursued his passion for maths with that much more focus and managed to publish quite a number of papers in leading mathematical journals in India before managing to earn a job as a Clark in the Madras Port Trust. It was here that Ramanujan wrote that famous letter to his mentor, G H Hardy in the year 1913 and the rest what they say is now history. The letter of Ramanujan, though evoked mixed response from Hardy initially, it befittingly earned Ramanujan an invitation from Hardy to the Trinity College, Cambridge.  In just five years of his stay in Cambridge, Ramanujan, with mentoring from Hardy for being more structured in his approach to solving mathematical problems, made profound contributions in mathematics and that too during the most testing times of the World War 1.  Befittingly his outstanding contributions at the Cambridge University, won Ramanujan, the B.A. degree ‘by research’ in 1916. This was a momentous occasion for Ramanujan who had no formal college degree until this time. This was the first of many great recognitions and honours, which were destined to follow Ramanujan in the years ahead at England and in India. The Trinity College, London and so also the prestigious Royal Society conferred their prestigious fellowship on Ramanujan. Incidentally Ramanujan became the first Indian to be so honoured with the fellowship of the Trinity College when he was only thirty.

 

The legend of Ramanujan is now almost a household name in India and most students in India will certainly have heard his name, though not quite familiar with his works. Notwithstanding the inspiration that the great Ramanujan has provided for our youngsters, most unfortunately, maths has been overly segmented as a subject meant only for the so called intellectuals, distancing it from common folks. Hopefully declaration of the National Mathematics Day will help change this scenario in India. Mathematics is one of the most important subjects, which acts as a tool to solve problems of every other science subjects. It provides students an opportunity to think in her own way and seek solutions to the problems. It makes a student systematic and methodical and encourages them to make their lives orderly. It is perhaps for this reason that Mathematics is often called as the mother of all sciences and it is befitting that the birthday of Ramanujan, the greatest of mathematicians of India, is celebrated as the National Mathematics Day in India. 

 

Ramanujan was a non-traditional mathematician who has been befittingly hailed as an all-time great mathematician of India in modern times and is famously clubbed with the other international greats like Euler, by G H Hardy. It is very well known that Hardy was a diehard cricket fan and used cricketing parlance in every field, including in rating scientists and mathematicians in a scale he termed ‘Bradman Scale’. He included the likes of the great mathematician Euler and Newton in the highest scale - the Bradman scale, measured in memory of Hardy’s all-time favourite cricket player - Don Bradman from Australia. What his rating for Ramanujan would have been can best be seen in the quote of another mathematician, Bruce C Berndt, who says ‘Paul Erdos has passed on to us, Hardy's personal ratings of mathematicians. Suppose that we rate mathematicians on the basis of pure talent on a scale from 0 to 100, Hardy gave himself a score of 25, Littlewood 30, Hilbert 80 and Ramanujan 100’. From this yardstick of marks assigned by the great Hardy to different mathematicians including himself and Ramanujan it is a given that Ramanujan was a Bradman scale mathematician for Hardy and that Ramanujan fell in the league of the greats like Euler and Newton. It is so heartening to know that Hardy, who was one of the great all time mathematicians of his time and also the man who is credited to be the discoverer of Ramanujan, has rated his prodigy -Ramanujan, far higher than what he rates himself and his close associate Littlewood, another great mathematician of their time.

 

Although Ramanujan lived only for 32 years (22nd December 1887 – 26th April 1920) out of which he spent just five years in the company of Hardy and Littlewood in Cambridge, he has left behind a very large volume (4000 original theorems) of his works (including the famous works rediscovered in his ‘lost note books’) which continue to fascinate greatest of mathematicians of the world, even today.  Legend has it that Srinivas Ramanujan’s mathematical genius came from his goddess Namagiri - his family deity in Kumbakonam - in whose reverence Ramanujan had undying faith. It is often said that Ramanujan credited his ideas and solutions to Namagiri, his family deity, who helped him decipher mathematical theorems in his dreams. An evidence to Ramanujan’s goddess gifted ability to provide solutions to problems can be seen in another anecdotal story associated with the number 1729. G H Hardy, his mentor, in his memoir, says that he once went to see Ramanujan who was ill and lying in the hospital bed in Putney. Hardy rode to the hospital in a taxi with ‘dull and unimpressive number 1729’, and he hoped that it was no bad omen number for him. This so called dull and unimpressive taxi number has now been immortalised by the genius of Ramanujan’s goddess gifted ability to seek problems and find solutions. On meeting Ramanujan in hospital, Hardy informs Ramanujan of this ‘unimpressive number’, but then, lo and behold, Ramanujan turns around to say that it is not a dull number, rather it is a very interesting and quite a unique number. Ramanujan, with some mental calculations told Hardy that 1729 is the smallest number expressible as sum of two cubes in two different ways. He instantly gave solution to his thoughts; 1729 = 12cube + 1cube = 10cube + 9 cube.  (1³ + 12³ = 1 + 1,728 = 1,729 and 9³ + 10³ = 729 + 1,000 = 1,729. Because of this incident, 1729 is now known as the Ramanujan - Hardy number.  Such was his goddess gifted talent for numbers. It is therefore no wonder that, Littlewood, an associate of Hardy, who also collaborated and worked with Ramanujan, once said ‘Ramanujan could remember the idiosyncrasies of numbers in an uncanny way ‘courtesy Namagiri Goddess’ and for Ramanujan ‘every positive integer was one of his personal friend’.

 

Srinivas Ramanujan was born to a poor orthodox Tamil Brahmin family on the 22nd of December, 1887 in his grandmother's house in Erode, Tamil Nadu. His father, Kuppuswamy Srinivasa Iyengar, worked as a clerk in a sari shop in Kumbakonam and his mother, Komalatammal, was a housewife who sang devotional songs at a local temple. They lived in a small traditional home on Sarangapani Sannidhi Street in the town of Kumbakonam. When Ramanujan was just 2 years old, he contracted smallpox, whose marks were conspicuous during his childhood days. Ramanujan confronted a life of extreme poverty during his younger days. His early studies were in different schools in Kumbakonam from the age of five until entering the Town High School at the age of 11 years. From his childhood, Ramanujan had a huge passion for mathematics. So much so that at the age of 12 he had mastered trigonometry (SL Loney: Plane Trigonometry) and developed many theorems on his own with no assistance. Ramanujan was a precocious child and did very well in school and hardly evinced any interest in any other activities or games other than his studies in maths. While his friends played, Ramanujan engaged himself in nothing but academics. The first sign of his extraordinary talent in maths was noticed when he was 13 years. It was when he began to work on his own on summing geometric and arithmetic series, far beyond his class. He engaged himself in solving cubic and other fairly complicated problems some of which he failed. He would engage his teachers in some unorthodox questions. He once questioned a teacher, who was teaching the class that any number divided by that number equals one. He asked him whether zero divided by zero would be one.

A major turning point in the life of Ramanujan came when he came across a mathematics book by G S Carr called ‘Synopsis of elementary results in pure mathematics’. This book was simply a compilation of thousands of mathematical results, with most of the results not explained properly with adequate proof. This book was written as an aid to coaching English mathematics students facing the notoriously difficult Tripos examination, which involved a great deal of rote memorization. However, this book greatly influenced Ramanujan and it inspired him to pursue his passion in maths with vigour and at a feverish pace. He worked through the book's results and beyond at the cost of other subjects. The style and approach of Carr to write the equations and solutions without giving mandated proof for the problems and equations became a trade mark of Ramanujan, who had fallen in love with this book. He worked extensively on his slate trying to find solutions to the problems. It must be remembered that working on slate was a necessity for him since he could not have afforded pen and paper, which is one reason why we don’t know what went into the mind of Ramanujan while solving problems.

 

In 1904, Ramanujan joined Government Arts College in Kumbakonam. Unfortunately, by now he was completely engrossed in maths with Carr Synopsis, which left him no time for other subjects. The outcome was on expected lines. He failed in all the subjects in college except excelling in maths. The failure did not help his cause and he had to lose the much needed scholarship that he had managed to get while joining the college. Failure played on his mind and he ran away from home to Andhra Pradesh. On his return he enrolled at Pachaiyappa’s college in Chennai. Here, too, he engaged himself mostly in maths and couldn’t comprehend subjects like physiology and once again failed in the BA Fine Arts exam. He had no way but to leave his college, without attaining a degree. Failure in BA did not however deter him from continuing his independent research in maths.

 

Failure in BA Fine Arts exams, resulted in Ramanujan concentrating completely on his maths research and it was during this period, 1903-1914, that Ramanujan meticulously kept a record of the final results of his original research work in the form of entries in two large-sized Note Books. He worked extensively on his slate and recorded his final results in note books. With time his profound works in maths were beginning to be noticed and he was lucky that he could show some of his recorded notebooks to eminent citizens in the city; Diwan, Bahadur Ramachandra Rao, V. Ramaswamy Iyer (Founder of Indian Mathematical Society) R. Narayana Iyer (Madras Port Trust), and to many others to convince them of his abilities as a Mathematician. Fortunately, it helped him get an employment at the Madras Port Trust as a clerk, at a salary equivalent to about 25 Pounds a year. By this time, Ramanujan had already established himself as a fairly well recognised scholar in maths and reports of his unusual abilities had begun to spread far and wide. Fortunately, his talent in maths came to the notice of Dr. G. T. Walker at the Madras University and courtesy his influence, Ramanujan obtained a small scholarship, which relieved him and set him free for research.

 

During this period Ramanujan published several papers in influential Indian Mathematical journals. He also sent his long list of complex theorems to three academics of Cambridge. One of them was G H Hardy. Ramanujan had come across a book by Hardy titled ‘Orders of Infinity’ which motivated him to write his now famous letter to Hardy. Ramanujan’s life took a decisive turn in 1913, when his 10-page letter containing 100 statements of theorems on infinite series, improper integrals, continued fractions, and number theory, reached Professor GH Hardy. The letter was a collection of Ramanujan’s self-derived equations and unproven theorems. Hardy was perplexed to see this letter from an ordinary clerk from India who had professed to have discovered some infinite series and had posted some 100 odd findings in his letter. Hardy knew that the letter warranted some merit but was also sceptical. After his dinner he met his compatriot mathematician Littlewood. Hardy mentioned to Littlewood some of the claims he had received in the mail from an unknown Indian clerk who was working at the Madras Port Trust. Hardy opined to Littlewood that some of the assertions made in the letter of Ramanujan were well known, others could be proven, while some others they could disprove. Hardy and Littlewood decided to have a relook of the letter, which they did and agreed that many of the statements made in Ramanujan’s letter were not only fascinating and unusual but also impossible to resolve. 

 

Hardy and Littlewood continued their discussion on this letter over the next couple of days and soon they were convinced that the clerk who wrote this innocent letter must be a genius. Hardy therefore replied to Ramanujan, encouraging him on his works. This was the beginning of a series of letter exchanges between the two of them. Although Hardy by now was sure that Ramanujan was an exceptional mathematician, however, in spite of his amazing feats in mathematics, Hardy realised that Ramanujan lacked the basic tools of the trade of a professional mathematician. Hardy knew that if Ramanujan was to fulfil his potential, he had to have a solid foundation in mathematics, which are normally possessed by the best of Cambridge graduates. For this Hardy extended an invitation to Ramanujan to come to Cambridge. Hardy was completely taken aback when Ramanujan could not make up his mind to accept his invitation to come to Cambridge. He later realised that as a Brahmin, Ramanujan was not expected to cross the ‘seven seas’. His mother was totally opposed to the idea of Ramanujan’s sea voyage. But fortunately Ramanujan could manage to convince his mother by invoking Goddess Namagiri to get his mother’s consent. Hardy soon swung into action. He asked E.H Neville, another fellow of Trinity College, who was on a trip to Madras, to secure Ramanujan a scholarship from the University of Madras. Neville’s wrote in a letter to the university that “the discovery of the genius of S. Ramanujan of Madras promises to be the most interesting event of our time in the mathematical world ..."

 

What followed next is now a legend that has entered into the annals of history. Courtesy Hardy and Neville, Madras University offered Ramanujan the first research scholarship of the University. Hardy also ensured that Ramanujan was offered a scholarship of 250 pounds a year for five years with 100 pounds for passage by ship and for initial outfit to go to England in 1914.  Ramanujan, at the age of 26 years, set sail to England and reached Cambridge, just before the outbreak of World War I. In the very first year of his stay in Cambridge- 1914 - Ramanujan made some path breaking contributions. However, his journey to success faced major hurdles in the initial part of his stay in Cambridge. Ramanujan who was majorly influenced by Carr’s style of summing up his end findings and stating the formula for an infinite series or such other mathematical problem, without assigning any deductive solution, was something which did not please his mentor Hardy nor any other mathematicians. This incident has been so beautifully depicted in a scene in the film “Ramanujan The Man Who Knew Infinity”. The scene shows the excitement of Ramanujan to publish his new findings and in his discussion with Hardy, Ramanujan presents to him two of his note books adding to the 100 formulas, which he had already sent to him and other problems which he had been corresponding with Hardy.  One of this was an interesting series which was mind boggling for Hardy to comprehend how Ramanujan could even visualise it. The very equation looks quite deceptive and it goes as follows; 1+2+3+4+5...... = -1/12. Interestingly Hardy immediately had recognised this to be the theory of analytic continuation (Riemann Zeta Function) from complex analysis. Hardy was convinced that Ramanujan must learn to produce mathematical solutions for the answers that so naturally come to Ramanujan so that other mathematicians take him seriously. The scene shows a brief argument that ensues between the two in which Ramanujan- role played by Dev Patel, is seen arguing with Hardy, a role played in the film by Jeremy Irons. Ramanujan expresses his desire to publish while Hardy insists that he must first learn to communicate his mind in the exacting standards that befit the standards of Cambridge. Hardy advises Ramanujan to take some basic lectures to learn a more formal language in maths which he could use to communicate his findings to his fellow compatriots in Cambridge.

 

With great difficulty and with support from his compatriot Littlewood, Hardy manages to convince Ramanujan of his need for a formal learning to be recognised in Cambridge. The scene in the film beautifully depicts Hardy taking Ramanujan on a walk through the famous library of Cambridge. He says to Ramanujan that if area of maths are to be challenged you must give proof to the formulas and that too in a manner which are understandable to the other mathematicians and for that structured learning in maths is mandated for Ramanujan. The scene shows Hardy leading Ramanujan to the hall where Newton’s Principia book is preserved. Hardy says Newton produced this monumental findings, which took long time for the people to understand. Hardy further says to Ramanujan that if you provide proof to your formulas, which you have noted in your note books, the time will not be far when your note books could find a place in this very precinct of Cambridge where Newton’s book finds his place. Hardy’s prophetic vision has been proved right. Ramanujan’s lost note books have finally made their way to Cambridge and are in the prized possession Cambridge even today. The scene so beautifully and with that artistic elegance, which beholds the Hollywood, depicts the dichotomy of relationship that existed between Hardy and Ramanujan.  

 

Ramanujan and Hardy had one of the most productive collaborations ever and during his five years of stay in Cambridge, Ramanujan wrote some 30 papers some on his own and some jointly with Hardy. Most of his works transformed the field of mathematics. On his way to achievements in maths, Ramanujan had to overcome severe hardships, sense of racism, difficulties of the World War 1, effects on his uncompromising vegetarian habits and many more. Hardy was no doubt a great mentor for Ramanujan but then there is an argument that he may not have shown that much needed humanitarian considerations for Ramanujan, which may have ensured a better living condition for Ramanujan in England. But then these thoughts are an afterthought, which have little or no meaning.

 

Ramanujan’s contributions were soon recognised by his compatriots in Cambridge and he was befittingly elected ‘Fellow of Trinity College’, Cambridge, even though he didn’t have a formal college degree. But unfortunately his stay at Cambridge was the harshest for Ramanujan. He was a strict vegetarian and he remained uncompromising about his dietetic observance. The World War 1 too did not help his cause, which made availability of choice materials for Ramanujan very scarce. Ramanujan always cooked his own food and most often neglected his health. During his five years stay in England, Ramanujan was constantly mentored by Hardy and he cemented a long outstanding partnership with Hardy. It was during this stay in England that Ramanujan was awarded a BSc (later renamed PhD). In 1918, Ramanujan was elected as a Fellow of the Royal Society (FRS), as a Research student in Mathematics, Distinguished as a pure mathematician, particularly for his investigations in elliptic functions and the theory of numbers. A rare honour for the not so formally educated, that too at a very young age. Ramanujan was also elected to the Trinity College Fellowship, in Oct. 1918 (a prize fellowship worth 250 pounds a year for six years with no duties or condition). Most unfortunately he was not destined to make full use of this fellowship.

 

His health kept deteriorating in England and Ramanujan was often times admitted to hospital. When his health improved slightly he preferred to return back to India. Ramanujan returned to India in 1919, after World War I, as a highly acclaimed mathematician. But years of stay in an unfamiliar climate in England clubbed with his uncompromising life style, had taken a heavy toll on his health. On his return to India, Ramanujan was diagnosed with tuberculosis and the disease had already taken a heavy toll on his health and he was continuing to be very weak and fragile. All through this period, Ramanujan continued to be associated with his works and exchanged letters with Hardy. In January 1920, he wrote the last letter to Hardy about his discovery of “Mock Theta functions” another master class contribution from a man who was almost in his death bed. In his last letter to Hardy, Ramanujan speaks of a class of very interesting functions, which he describes as "mock theta functions". In his quintessential style Ramanujan gives 17 examples of the mick theta functions but provides no precise definition. However, we now know that by "theta function" Ramanujan actually meant what we call today a "modular form" and by "mock" something "whimsical". His 17 functions, which he described in his last letter, Ramanujan had described properties, which are analogous to those of usual modular functions, which do not belong to any known class. The mystery Ramanujan’s Mock Theta function was later solved in 2002 by Sander Zwegers in his Ph.D.

 

Ramanujan succumbed to his long standing ailments and died on 26th April, 1920. In his small lifetime Ramanujan compiled more than 3,000 results on equations and identities, many of them have been posthumously proven right. His ‘Lost Notebook’ was found in 1976 by Prof. George Andrews of Pennsylvania State University, and its facsimile edition was brought out by Narosa Publishing House in 1987, on the occasion of Ramanujan’s birth centenary. Besides his published work, Ramanujan has left behind several notebooks, which have been the subject of academic discussion and study even today.

 

In his short life of little over 32 years, Ramanujan scaled unimaginable heights. What is so very unique is that his mathematics, done over a hundred years ago, finds applications today in areas other than pure mathematics, which were not even established during his time. Two among these are signal processing and Black Hole physics. What could have been the contributions of Ramanujan if conditions were more conducive to him and if he had lived longer is something which will continue to remain in the realms of speculation. It was a befitting tribute that the legendary Ramanujan’s life and works were chosen for making of the Dev Patel starrer Hollywood film ‘The Man Who Knew Infinity’ (2015), which has perpetuated his genius to the world audience. May he continue to inspire millions of Indians and global students. 

Rest in Peace Ramanujan in the heavenly abode of your Goddess Namagiri.

Decadal Reminiscence of “Deconstructed Innings: A Tribute to Sachin Tendulkar” exhibition

Ten years ago, on 18 December 2014, an interesting art exhibition entitled “Deconstructed Innings: A Tribute to Sachin Tendulkar” was open...